首页> 外文期刊>Surface Science >Fe/Cu(100)—a test case for the understanding of epitaxially grown magnetic thin films
【24h】

Fe/Cu(100)—a test case for the understanding of epitaxially grown magnetic thin films

机译:Fe / Cu(100)-理解外延生长磁性薄膜的测试案例

获取原文
获取原文并翻译 | 示例

摘要

Properties of ultra-thin films deviate from those of the corresponding bulk material already because of the mere reduction of dimensionality and, related to that, the reduction of symmetry. This applies to all types of collective phenomena as, e.g. geometrical structure, electronic properties and magnetism. Also, the alternating combination of different film material stacked perpendicular to the surface can lead to completely new physical phenomena as, e.g., the giant magnetoresistance (GMR) effect, i.e. the enhanced sensitivity of the electrical resistivity to external magnetic fields. Within only about one decade after its discovery, the first GMR-based read-head devices appeared in commercial hard disks, and the near future might bring even non-volatile magnetic random access memory (MRAM) devices based on this technology . For these reasons, thin films of magnetic materials have attracted a great deal of research attention. Yet in addition to the reduced dimensionality, there is another factor with tremendous impact on the film properties: When the film is grown on a crystalline substrate it tends to assume the latter's lateral periodicity. Such pseudomorphic growth is realized when the energy costs for the distortion of the film's native lattice is overbalanced by the energy gained by the formation of the film-substrate interface. This is frequently the case when the substrate's binding-potential surface is strongly corrugated. In these cases, the thin film is an artificial material whose surface parallel lattice parameter deviates from that of the bulk material (usually accompanied by a tetragonal distortion). A completely different crystal structure may even result. An example for the first case is Ni on Cu(100), which simply continues the substrate lattice parameters up to a thickness of about 20 monolayers (ML) before it gradually converts towards Ni's bulk structure. In the whole pseudomorphic range, the film exhibits a constant, laterally expanded lattice parameter (≈2.5%) and likewise contracted layer distances (≈3%). In contrast, cobalt—whose native structure at room temperature is hexagonally close-packed(hcp)―exhibits pseudomorphic growth in face-centre cubic (fcc) structure on Cu(100) up to serveral tens of monolayers.
机译:由于仅减小尺寸,并且与此相关的是对称性的减小,超薄膜的性能已经偏离了相应的块状材料的性能。这适用于所有类型的集体现象,例如几何结构,电子特性和磁性。而且,垂直于表面堆叠的不同膜材料的交替组合可以导致全新的物理现象,例如,巨磁阻(GMR)效应,即,电阻率对外部磁场的增强的敏感性。在发现后仅约十年内,首批基于GMR的读取头设备出现在商用硬盘中,不久的将来甚至可能带来基于该技术的非易失性磁性随机存取存储器(MRAM)设备。由于这些原因,磁性材料薄膜引起了很多研究关注。然而,除了尺寸减小之外,还有另一个因素对薄膜的性能产生巨大影响:当薄膜在结晶基质上生长时,它倾向于假定后者的横向周期性。当通过薄膜-衬底界面的形成所获得的能量过度平衡了薄膜天然晶格变形的能量成本时,就可以实现这种假晶生长。当基材的结合电位表面强烈起皱时,通常会出现这种情况。在这些情况下,薄膜是人造材料,其表面平行晶格参数与块状材料的表面平行晶格参数不同(通常伴有四边形畸变)。甚至可能会产生完全不同的晶体结构。第一种情况的一个例子是在Cu(100)上的Ni,它在将其逐渐转变为Ni的块状结构之前,一直将衬底晶格参数延续到大约20个单层(ML)的厚度。在整个伪变形范围内,薄膜表现出恒定的横向扩展晶格参数(约2.5%)和同样的收缩层距离(约3%)。相比之下,钴(其室温下的天然结构是六方密堆积的(hcp))显示出Cu(100)上面心立方(fcc)结构的假晶型生长,直至数十个单层。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号