首页> 外文期刊>Superlattices and microstructures >Choice of quantum dot materials for fabricating memory devices with longer storage and faster writing of information
【24h】

Choice of quantum dot materials for fabricating memory devices with longer storage and faster writing of information

机译:选择量子点材料来制造存储时间更长,信息写入速度更快的存储设备

获取原文
获取原文并翻译 | 示例

摘要

We present theoretical modelling and simulation approach for studying the electron and hole dynamics in various Ⅲ-Ⅴ quantum dot (QD) device systems for high performance memory applications. A rigorous computation is carried out by developing a self-consistent Schroedinger Poisson solver for obtaining the potential state of the QD for various applied voltages of the device. A detailed capture as well as emission mechanism of the carriers is elucidated at various operating temperatures ranging from 10 to 300 K. Our results showed suitability of holes in GaSb/GaAs dots for 107 times increase in the duration of data storage and 34 times faster writing capability as compared to InAs/GaAs QDs at room temperature operation. A trade-off is necessary between extending the storage time and increasing the write time by incorporation of high bandgap AlAs barrier. However, a technique is proposed to avoid the trade-off and minimize the write and erase time along with longer storage of data for QD memories with barrier layers. Our computation also reveals greater retention capacity of electrons over holes when localized to the same potential barrier. Applications of these QDs at cryogenic temperatures are also elucidated. Thus, based on our comparative analysis, valuable information is being provided to the device scientist in choosing suitable quantum dot material for memory devices and optimizing its performance.
机译:我们提出了用于研究高性能存储应用中各种Ⅲ-Ⅴ量子点(QD)器件系统中电子和空穴动力学的理论建模和仿真方法。通过开发自洽的Schroedinger Poisson求解器,可以进行严格的计算,以获取设备各种施加电压下QD的电势状态。阐明了在10至300 K的不同工作温度下载流子的详细捕获及其发射机理。我们的结果表明,GaSb / GaAs点中的孔适用于数据存储时间增加107倍,写入速度提高34倍与在室温下运行的InAs / GaAs QD相比具有更高的能力。通过结合高带隙AlAs势垒,需要在延长存储时间和增加写入时间之间进行权衡。然而,提出了一种避免折衷并且最小化写入和擦除时间以及具有阻挡层的QD存储器的数据的更长存储的技术。我们的计算还揭示了当位于相同的势垒时,电子在空穴上的保留能力更高。还阐明了这些QD在低温下的应用。因此,基于我们的比较分析,在为存储设备选择合适的量子点材料并优化其性能时,可为设备科学家提供有价值的信息。

著录项

  • 来源
    《Superlattices and microstructures》 |2016年第12期|1042-1056|共15页
  • 作者

    V. Damodaran; Kaustab Ghosh;

  • 作者单位

    School of Electronics Engineering (SENSE), VIT University, Vandalur Kelambakkam Road, Chennai, 600127, India;

    School of Electronics Engineering (SENSE), VIT University, Vandalur Kelambakkam Road, Chennai, 600127, India;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号