首页> 外文期刊>Superlattices and microstructures >Modulation stability and optical soliton solutions of nonlinear Schroedinger equation with higher order dispersion and nonlinear terms and its applications
【24h】

Modulation stability and optical soliton solutions of nonlinear Schroedinger equation with higher order dispersion and nonlinear terms and its applications

机译:高阶色散和非线性项的非线性Schroedinger方程的调制稳定性和孤子解及其应用

获取原文
获取原文并翻译 | 示例

摘要

In optical fibers, the higher order non-linear Schrodinger equation (NLSE) with cubic quintic nonlinearity describes the propagation of extremely short pulses. We constructed bright and dark solitons, solitary wave and periodic solitary wave solutions of generalized higher order NLSE in cubic quintic non Kerr medium by applying proposed modified extended mapping method. These obtained solutions have key applications in physics and mathematics. Moreover, we have also presented the formation conditions on solitary wave parameters in which dark and bright solitons can exist for this media. We also gave graphically the movement of constructed solitary wave and soliton solutions, that helps to realize the physical phenomena's of this model. The stability of the model in normal dispersion and anomalous regime is discussed by using the modulation instability analysis, which confirms that all constructed solutions are exact and stable. Many other such types of models arising in applied sciences can also be solved by this reliable, powerful and effective method.
机译:在光纤中,具有三次五次非线性的高阶非线性Schrodinger方程(NLSE)描述了极短脉冲的传播。通过应用改进的扩展映射方法,我们在立方五次非Kerr介质中构造了广义高阶NLSE的明暗孤子,孤波和周期孤波解。这些获得的解决方案在物理和数学中具有关键应用。此外,我们还介绍了孤波参数的形成条件,其中该介质可以存在暗和亮孤子。我们还以图形方式给出了构造的孤立波和孤立子解的运动,这有助于实现该模型的物理现象。通过调制不稳定性分析讨论了模型在正常色散和异常状态下的稳定性,这证实了所有构造的解都是精确且稳定的。应用科学中出现的许多其他这类模型也可以通过这种可靠,强大和有效的方法来解决。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号