首页> 外文期刊>Superlattices and microstructures >Modulation stability and dispersive optical soliton solutions of higher order nonlinear Schroedinger equation and its applications in mono-mode optical fibers
【24h】

Modulation stability and dispersive optical soliton solutions of higher order nonlinear Schroedinger equation and its applications in mono-mode optical fibers

机译:高阶非线性Schroedinger方程的调制稳定性和色散孤子解及其在单模光纤中的应用

获取原文
获取原文并翻译 | 示例

摘要

AbstractIn mono-mode optical fibers, the higher order non-linear Schrödinger equation (NLSE) describes the propagation of enormously short light pulses. We constructed optical solitons and, solitary wave solutions of higher order NLSE mono-mode optical fibers via employing modified extended mapping method which has important applications in Mathematics and physics. Furthermore, the formation conditions are also given on parameters in which optical bright and dark solitons can exist for this media. The moment of the obtained solutions are also given graphically, that helps to realize the physical phenomena's of this model. The modulation instability analysis is utilized to discuss the model stability, which verifies that all obtained solutions are exact and stable. Many other such types of models arising in applied sciences can also be solved by this reliable, powerful and effective method. The method can also be functional to other sorts of higher order nonlinear problems in contemporary areas of research.Applications in mono-mode optical fibersThe hydrodynamic mathematical method is obtained.Modulation stability analysis with applications is discussed.Optical soliton solutions of Higher order nonlinear Schrödinger equation.
机译: 摘要 在单模光纤中,高阶非线性Schrödinger方程(NLSE)描述了非常短的光脉冲的传播。我们采用改进的扩展映射方法构造了高阶NLSE单模光纤的孤子和孤波解决方案,该方法在数学和物理学中都有重要的应用。此外,形成条件还给出了对于该介质可以存在光学亮和暗孤子的参数。还以图形方式给出了获得的解决方案的时刻,这有助于实现该模型的物理现象。利用调制不稳定性分析来讨论模型的稳定性,这证明所获得的所有解都是精确且稳定的。应用科学中出现的许多其他这类模型也可以通过这种可靠,强大和有效的方法来解决。该方法还可用于当代研究领域中的其他类型的高阶非线性问题。 在单模光学中的应用纤维 获得了流体力学数学方法。 < ce:para id =“ p0020” view =“ all”>讨论了应用程序的调制稳定性分析。 光学孤岛高阶非线性Schrödinger方程的n个解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号