首页> 外文期刊>Superlattices and microstructures >Investigation of electronic bound states of a radially modulated nanowire: Level anti-crossing and bound states in continuum
【24h】

Investigation of electronic bound states of a radially modulated nanowire: Level anti-crossing and bound states in continuum

机译:径向调制纳米线的电子束缚态的研究:连续体中的水平反交叉和束缚态

获取原文
获取原文并翻译 | 示例

摘要

In this paper the electronic confinement energy states of a radially modulated cylindrical nanowire are numerically calculated, assuming that the modulated section has finite length and its radius is greater than the remaining section of the nanowire. The Schrodinger equation is solved within the effective mass approximation using the finite element method to specify the necessary conditions for emersion of 3-dimensionally confined states and to investigate size and magnetic field dependence of the confinement energies. Our results show that for any local increment of nanowire radius, there is at least one bound state for each channel of angular momentum. The energies of bound states of higher angular momentum are shown to lie in the energy continuum of lower angular momentums. In addition, there is some level crossing and anti-crossing in the size dependence of confinement energies which can be explained on the basis of symmetry. It is observed that in the vicinity of the level anti-crossing, the oscillator strengths associated to intersubband transitions from ground state change dramatically and vanish for some specific width of modulation. (C) 2018 Elsevier Ltd. All rights reserved.
机译:在本文中,假设已调制部分的长度有限且其半径大于纳米线的其余部分,则对通过径向方式调制的圆柱形纳米线的电子约束能态进行数值计算。使用有限元方法在有效质量近似值范围内求解Schrodinger方程,以指定3维受限状态出现的必要条件,并研究受限能量的大小和磁场依赖性。我们的结果表明,对于纳米线半径的任何局部增量,角动量的每个通道都至少具有一个绑定状态。较高的角动量的束缚态的能量显示为位于较低的角动量的能量连续体中。另外,约束能量的大小依赖性存在一定的能级交叉和反交叉,这可以根据对称性来解释。可以看到,在电平反交叉附近,与从基态到子带间跃迁相关的振荡器强度急剧变化,并在某些特定的调制宽度上消失。 (C)2018 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号