首页> 外文期刊>Studies in Informatics and Control >A Hybrid Conjugate Gradient Algorithm Withmodified Secant Condition For unconstrained Optimization As A Convex Combination Of Hestenes-stiefel And Dai-yuan Algorithms
【24h】

A Hybrid Conjugate Gradient Algorithm Withmodified Secant Condition For unconstrained Optimization As A Convex Combination Of Hestenes-stiefel And Dai-yuan Algorithms

机译:Hestenes-stiefel和Dai-yuan算法的凸组合,具有修正割线条件的混合共轭梯度算法,用于无约束优化

获取原文
获取原文并翻译 | 示例

摘要

Another hybrid conjugate gradient algorithm is suggested in this paper. The parameter β_k is computed as a convex combination of β_k~(HS) (Hestenes-Stiefel) and β_k~(DY) (Dai-Yuan) formulae, i.e. β_k~C = (1 - θ_k )β_k~(HS) + θ_kβ_k~(DY). The parameter θ_k in the convex combination is computed in such a way so that the direction corresponding to the conjugate gradient algorithm to be the Newton direction and the pair (s_k, y_k ) to satisfy the modified secant condition given by Zhang et al. [32] and Zhang and Xu [33], where s_k = x_(k+1) - x_k and y_k = g_(k+1) - g_k. The algorithm uses the standard Wolfe line search conditions. Numerical comparisons with conjugate gradient algorithms show that this hybrid computational scheme outperforms a variant of the hybrid conjugate gradient algorithm given by Andrei [6], in which the pair (s_k, y_k) satisfies the secant condition ▽~2 f(x_(k+1))s_k = y_k , as well as the Hestenes-Stiefel, the Dai-Yuan conjugate gradient algorithms, and the hybrid conjugate gradient algorithms of Dai and Yuan. A set of 750 unconstrained optimization problems are used, some of them from the CUTE library.
机译:本文提出了另一种混合共轭梯度算法。将参数β_k计算为β_k〜(HS)(Hestenes-Stiefel)和β_k〜(DY)(大元)公式的凸组合,即β_k〜C =(1-θ_k)β_k〜(HS)+θ_kβ_k 〜(DY)。凸组合中的参数θ_k的计算方式应使得与共轭梯度算法相对应的方向为牛顿方向,并且对对(s_k,y_k)满足张等人给出的修正割线条件。 [32]和Zhang and Xu [33],其中s_k = x_(k + 1)-x_k和y_k = g_(k + 1)-g_k。该算法使用标准的Wolfe线搜索条件。与共轭梯度算法的数值比较表明,该混合计算方案优于Andrei [6]给出的混合共轭梯度算法的一种变体,其中(s_k,y_k)对满足割线条件▽〜2 f(x_(k + 1))s_k = y_k,以及Hestenes-Stiefel,Dai-Yuan共轭梯度算法以及Dai和Yuan的混合共轭梯度算法。使用了750个无约束的优化问题,其中一些来自CUTE库。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号