首页> 外文期刊>Studies in Informatics and Control >A Hybrid Conjugate Gradient Algorithm for Unconstrained Optimization as a Convex Combination of Hestenes-Stiefel and Dai-Yuan
【24h】

A Hybrid Conjugate Gradient Algorithm for Unconstrained Optimization as a Convex Combination of Hestenes-Stiefel and Dai-Yuan

机译:Hestenes-Stiefel和Dai-Yuan的凸组合的无约束优化混合共轭梯度算法

获取原文

摘要

In this paper we propose and analyze another hybrid conjugate gradient algorithm in which the parameter β_k is computed as a convex combination of β_k~(HS) (Hestenes-Stiefel) and β_k~(DY) (Dai-Yuan), i.e. β_k~C = (1-θ_k)β_K~(HS) + θ_kβ_k~(DY). The parameter θ_k, in the convex combination is computed in such a way that the direction corresponding to the conjugate gradient algorithm is the Newton direction and the secant equation is satisfied. The algorithm uses the standard Wolfe line search conditions. Numerical comparisons with conjugate gradient algorithms using a set of 750 unconstrained optimization problems, some of them from the CUTE library, show that this hybrid computational scheme outperforms the Hestenes-Stiefel and the Dai-Yuan conjugate gradient algorithms as well as some other known hybrid conjugate gradient algorithms. Comparisons with CG_DESCENT by Hager and Zhang [17] and LBFGS by Liu and Nocedal [22] show that CG_DESCENT is more robust then our algorithm, and LBFGS is top performer among these algorithms.
机译:在本文中,我们提出并分析了另一种混合共轭梯度算法,其中将参数β_k计算为β_k〜(HS)(Hestenes-Stiefel)和β_k〜(DY)(Dai-Yuan)的凸组合,即β_k〜C =(1-θ_k)β_K〜(HS)+θ_kβ_k〜(DY)。以使得与共轭梯度算法相对应的方向是牛顿方向并且满足割线方程的方式来计算凸组合中的参数θ_k。该算法使用标准的Wolfe线搜索条件。使用共750个无约束优化问题集(​​其中一些来自CUTE库)与共轭梯度算法进行数值比较,结果表明该混合计算方案优于Hestenes-Stiefel和Dai-Yuan共轭梯度算法以及其他一些已知的混合共轭算法梯度算法。与Hager和Zhang [17]的CG_DESCENT以及Liu和Nocedal [22]的LBFGS的比较表明,CG_DESCENT比我们的算法更健壮,而LBFGS在这些算法中表现最好。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号