首页> 外文期刊>Numerical Algorithms >Accelerated hybrid conjugate gradient algorithm with modified secant condition for unconstrained optimization
【24h】

Accelerated hybrid conjugate gradient algorithm with modified secant condition for unconstrained optimization

机译:修正割线条件的加速混合共轭梯度算法无约束优化

获取原文
获取原文并翻译 | 示例

摘要

An accelerated hybrid conjugate gradient algorithm represents the subject of this paper. The parameter β k is computed as a convex combination of (Hestenes and Stiefel, J Res Nat Bur Stand 49:409–436, 1952) and (Dai and Yuan, SIAM J Optim 10:177–182, 1999), i.e. . The parameter θ k in the convex combinaztion is computed in such a way the direction corresponding to the conjugate gradient algorithm is the best direction we know, i.e. the Newton direction, while the pair (s k , y k ) satisfies the modified secant condition given by Li et al. (J Comput Appl Math 202:523–539, 2007) B k + 1 s k = z k , where , , s k = x k + 1 − x k and y k = g k + 1 − g k . It is shown that both for uniformly convex functions and for general nonlinear functions the algorithm with strong Wolfe line search is globally convergent. The algorithm uses an acceleration scheme modifying the steplength α k for improving the reduction of the function values along the iterations. Numerical comparisons with conjugate gradient algorithms show that this hybrid computational scheme outperforms a variant of the hybrid conjugate gradient algorithm given by Andrei (Numer Algorithms 47:143–156, 2008), in which the pair (s k , y k ) satisfies the classical secant condition B k + 1 s k = y k , as well as some other conjugate gradient algorithms including Hestenes-Stiefel, Dai-Yuan, Polack-Ribière-Polyak, Liu-Storey, hybrid Dai-Yuan, Gilbert-Nocedal etc. A set of 75 unconstrained optimization problems with 10 different dimensions is being used (Andrei, Adv Model Optim 10:147–161, 2008).
机译:加速混合共轭梯度算法代表了本文的主题。参数β k 是(Hestenes和Stiefel,J Res Nat Bur Stand 49:409-436,1952)和(Dai and Yuan,SIAM J Optim 10:177-182)的凸组合。 (1999)。凸组合中的参数θ k 是这样计算的:对应于共轭梯度算法的方向是我们知道的最佳方向,即牛顿方向,而对(s k ,y k )满足Li等人给出的修正割线条件。 (J Comput Appl Math 202:523–539,2007)B k +1 s k = z k ,其中,,s k = x k +1 -x k 和y k = g k +1 -g k 。结果表明,对于均匀凸函数和一般非线性函数,具有强沃尔夫线搜索的算法都是全局收敛的。该算法使用修改步长α k 的加速方案,以改善沿迭代的函数值的减小。与共轭梯度算法的数值比较表明,这种混合计算方案优于Andrei给出的混合共轭梯度算法的一种变体(Numer算法47:143-156,2008年),其中对(s k ,y k )满足经典割线条件B k +1 s k = y k 其他共轭梯度算法,包括Hestenes-Stiefel,Dai-Yuan,Palack-Ribière-Polyak,Liu-Storey,混合Dai-Yuan,Gilbert-Nocedal等。正在使用一组75个无约束优化问题,其中包含10个不同维度(Andrei ,Adv Model Optim 10:147-161,2008年)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号