首页> 外文期刊>Structural and Multidisciplinary Optimization >Analysis of microstructures and phase transition phenomena in one-dimensional, non-linear elasticity by convex optimization
【24h】

Analysis of microstructures and phase transition phenomena in one-dimensional, non-linear elasticity by convex optimization

机译:一维非线性弹性的微结构和相变现象的凸优化分析

获取原文
获取原文并翻译 | 示例

摘要

We propose a general method for determining the theoretical microstructure in one-dimensional elastic bars whose internal deformation energy is given by nonconvex polynomials. We use nonconvex variational principles and Young measure theory to describe the optimal energetic configuration of the body. By using convex analysis and classical characterizations of algebraic moments, we can formulate the problem as a convex optimal control problem. Therefore, we can estimate the microstructure of several models by using nonlinear programming techniques. This method can determine the minimizers or the minimizing sequences of nonconvex, variational problems used in one-dimensional, nonlinear elasticity.
机译:我们提出了一种确定一维弹性杆的理论微观结构的一般方法,该弹性杆的内部变形能由非凸多项式给出。我们使用非凸变分原理和Young测度理论来描述身体的最佳能量结构。通过使用凸分析和代数矩的经典刻画,我们可以将问题表达为凸最优控制问题。因此,我们可以使用非线性编程技术来估计几个模型的微观结构。该方法可以确定一维非线性弹性中使用的非凸变分问题的最小化子或最小化序列。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号