首页> 外文期刊>Structural and Multidisciplinary Optimization >Development and validation of a dynamic metamodel based on stochastic radial basis functions and uncertainty quantification
【24h】

Development and validation of a dynamic metamodel based on stochastic radial basis functions and uncertainty quantification

机译:基于随机径向基函数和不确定性量化的动态元模型的开发和验证

获取原文
获取原文并翻译 | 示例

摘要

A dynamic radial basis function (DRBF) metamodel is derived and validated, based on stochastic RBF and uncertainty quantification (UQ). A metric for assessing metamodel efficiency is developed and used. The validation includes comparisons with a dynamic implementation of Kriging (DKG) and static metamodels for both deterministic test functions (with dimensionality ranging from two to six) and industrial UQ problems with analytical and numerical benchmarks, respectively. DRBF extends standard RBF using stochastic kernel functions defined by an uncertain tuning parameter whose distribution is arbitrary and whose effects on the prediction are determined using UQ methods. Auto-tuning based on curvature, adaptive sampling based on prediction uncertainty, parallel infill, and multiple response criteria are used. Industrial problems are two UQ applications in ship hydrodynamics using high-fidelity computational fluid dynamics for the high-speed Delft catamaran with stochastic operating and environmental conditions: (1) calm water resistance, sinkage and trim with variable Froude number; and (2) mean value and root mean square of resistance and heave and pitch motions with variable regular head wave. The number of high-fidelity evaluations required to achieve prescribed error levels is considered as the efficiency metric, focusing on fitting accuracy and UQ variables. DKG is found more efficient for fitting low-dimensional test functions and one-dimensional UQ, whereas DRBF has a greater efficiency for fitting higher-dimensional test functions and two-dimensional UQ.
机译:基于随机RBF和不确定性量化(UQ),推导并验证了动态径向基函数(DRBF)元模型。开发并使用了一种评估元模型效率的度量。验证包括将Kriging(DKG)和静态元模型的动态实现与确定性测试功能(维数从2到6)以及工业UQ问题(分别具有分析和数字基准)进行比较。 DRBF使用由不确定调整参数定义的随机核函数扩展标准RBF,不确定调整参数的分布是任意的,其对预测的影响是使用UQ方法确定的。使用基于曲率的自动调整,基于预测不确定性的自适应采样,并行填充和多个响应标准。工业问题是在具有随机操作和环境条件的高速代尔夫特双体船中使用高保真计算流体动力学的船舶流体动力学中的两个UQ应用:(1)稳定的耐水性,沉没性和可变Froude数的纵倾; (2)具有可变规则头波的阻力,升沉和俯仰运动的平均值和均方根。为了达到规定的误差水平,需要进行高保真评估的次数被视为效率指标,重点是拟合精度和UQ变量。发现DKG对拟合低维测试函数和一维UQ更为有效,而DRBF对拟合高维测试函数和二维UQ的效率更高。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号