首页> 外文期刊>Structural health monitoring >A hybrid learning strategy for structural damage detection
【24h】

A hybrid learning strategy for structural damage detection

机译:结构损伤检测混合学习策略

获取原文
获取原文并翻译 | 示例

摘要

Over the past decades, several methods for structural health monitoring have been developed and employed in various practical applications. Some of these techniques aimed to use raw dynamic measurements to detect damage or structural changes. Desirably, structural health monitoring systems should rely on computational tools capable of evaluating the information acquired from the structure continuously, in real time. However, most damage detection techniques fail to identify novelties automatically (e.g. damage, abnormal behaviors, and among others), rendering human decisions necessary. Recent studies have shown that the use of statistical parameters extracted directly from raw time domain data, such as acceleration measurements, could provide more sensitive responses to damage with less computational effort. In addition, machine learning techniques have never been more in trend than nowadays. In this context, this article proposes an original approach based on the combination of statistical indicators-to characterize acceleration measurements in the time domain-and computational intelligence techniques to detect damage. The methodology consists in the combined use of supervised (artificial neural networks) and unsupervised (k-means clustering) learning classification methods for the construction of a hybrid classifier. The objective is to detect not only structural states already known but also dynamic behaviors that have not been identified yet, that is, novelties. The main purpose is to allow a real-time structural integrity monitoring, providing responses in an automatic and continuous way while the structure is under operation. The robustness of the proposed approach is evaluated using data obtained from numerical simulations and experimental tests performed in laboratory and in situ. Results achieved so far attest a promising performance of the hybrid classifier.
机译:在过去的几十年中,在各种实际应用中开发并雇用了几种结构性健康监测方法。其中一些技术旨在使用原始动态测量来检测损坏或结构变化。理想地,结构健康监测系统应该依赖于能够实时评估从结构获取的信息的计算工具。然而,大多数损坏检测技术无法自动识别Novelties(例如,损坏,异常行为以及其他),使人们的决定是必要的。最近的研究表明,使用直接从原始时域数据提取的统计参数,例如加速度测量,可以为较少计算工作的损坏提供更敏感的响应。此外,机器学习技术从未如今的趋势更加多。在这种情况下,本文提出了一种基于统计指标组合的原始方法 - 以时域 - 和计算智能技术的加速度测量来检测损坏。该方法包括用于施加混合分类器的监督(人工神经网络)和无监督(K-Means聚类)学习分类方法的组合使用。目标是不仅检测已经已知的结构状态,而且尚未识别的动态行为,即Novelties。主要目的是允许实时结构完整性监测,在结构处于操作下,以自动和连续方式提供响应。使用从实验室和原位进行的数值模拟和实验测试获得的数据来评估所提出的方法的稳健性。到目前为止所达到的结果证明了混合分类器的有希望的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号