首页> 外文期刊>Structural equation modeling >Longitudinal Dynamic Analyses of Depression and Academic Achievement in the Hawaiian High Schools Health Survey Using Contemporary Latent Variable Change Models
【24h】

Longitudinal Dynamic Analyses of Depression and Academic Achievement in the Hawaiian High Schools Health Survey Using Contemporary Latent Variable Change Models

机译:夏威夷高中学生健康状况调查中抑郁与学业成就的纵向动态分析,采用当代潜在变量变化模型

获取原文
获取原文并翻译 | 示例

摘要

The scientific literature consistently supports a negative relationship between adolescent depression and educational achievement, but we are certainly less sure on the causal determinants for this robust association. In this article we present multivariate data from a longitudinal cohort-sequential study of high school students in Hawai'i (following McArdle, 2008; McArdle, Johnson, Hishinuma, Miyamoto, & Andrade, 2001). We first describe the full set of data on academic achievements and self-reported depression. We then carry out and present a progression of analyses in an effort to determine the accuracy, size, and direction of the dynamic relationships among depression and academic achievement, including gender and ethnic group differences. We apply 3 recently available forms of longitudinal data analysis: (a) Dealing with incomplete data-We apply these methods to cohort-sequential data with relatively large blocks of data that are incomplete for a variety of reasons (Little & Rubin, 1987; McArdle & Hamagami, 1992). (b) Ordinal measurement models (Muth6n & Muthen, 2006)-We use a variety of statistical and psychometric measurement models, including ordinal measurement models, to help clarify the strongest patterns of influence. (c) Dynamic structural equation models (DSEMs; McArdle, 2008). We found the DSEM approach taken here was viable for a large amount of data, the assumption of an invariant metric over time was reasonable for ordinal estimates, and there were very few group differences in dynamic systems. We conclude that our dynamic evidence suggests that depression affects academic achievement, and not the other way around. We further discuss the methodological implications of the study.
机译:科学文献一贯支持青春期抑郁与教育成就之间的负相关关系,但我们当然不确定这种牢固关联的因果决定因素。在本文中,我们提供了来自夏威夷高中生纵向队列研究的多元数据(紧随McArdle,2008; McArdle,Johnson,Hishinuma,Miyamoto和Andrade,2001)。我们首先描述有关学术成就和自我报告的抑郁症的完整数据。然后,我们进行并提出了一系列分析方法,以期确定抑郁症与学习成绩之间的动态关系(包括性别和种族差异)的准确性,大小和方向。我们应用了3种最近可用的纵向数据分析形式:(a)处理不完整数据-我们将这些方法应用于具有较大数据块的队列序列数据,这些数据块由于各种原因而不完整(Little&Rubin,1987; McArdle &Hamagami,1992)。 (b)序数测量模型(Muth6n和Muthen,2006年)-我们使用各种统计和心理测量模型,包括序数测量模型,以帮助阐明最有力的影响模式。 (c)动态结构方程模型(DSEM; McArdle,2008年)。我们发现,这里采用的DSEM方法对于大量数据是可行的,随着时间推移不变度量的假设对于序数估计是合理的,并且动态系统中的组差异很小。我们得出的结论是,我们有力的证据表明,抑郁症会影响学习成绩,而不是相反。我们将进一步讨论该研究的方法论意义。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号