首页> 外文期刊>Statistics and computing >Maximum likelihood from spatial random effects models via the stochastic approximation expectation maximization algorithm
【24h】

Maximum likelihood from spatial random effects models via the stochastic approximation expectation maximization algorithm

机译:通过随机近似期望最大化算法从空间随机效应模型获得最大似然

获取原文
获取原文并翻译 | 示例

摘要

We introduce a class of spatial random effects models that have Markov random fields (MRF) as latent processes. Calculating the maximum likelihood estimates of unknown parameters in SREs is extremely difficult, because the normalizing factors of MRFs and additional integrations from unobserved random effects are computationally prohibitive. We propose a stochastic approximation expectation-maximization (SAEM) algorithm to maximize the likelihood functions of spatial random effects models. The SAEM algorithm integrates recent improvements in stochastic approximation algorithms; it also includes components of the Newton-Raphson algorithm and the expectation-maximization (EM) gradient algorithm. The convergence of the SAEM algorithm is guaranteed under some mild conditions. We apply the SAEM algorithm to three examples that are representative of real-world applications: a state space model, a noisy Ising model, and segmenting magnetic resonance images (MRI) of the human brain. The SAEM algorithm gives satisfactory results in finding the maximum likelihood estimate of spatial random effects models in each of these instances.
机译:我们介绍了一类具有马尔可夫随机场(MRF)作为潜在过程的空间随机效应模型。计算SRE中未知参数的最大似然估计非常困难,因为MRF的归一化因子和未观察到的随机效应带来的额外积分在计算上是令人望而却步的。我们提出了一种随机近似期望最大化(SAEM)算法来最大化空间随机效应模型的似然函数。 SAEM算法集成了随机近似算法的最新改进;它还包括Newton-Raphson算法和期望最大(EM)梯度算法的组件。在某些温和条件下,可以保证SAEM算法的收敛性。我们将SAEM算法应用于代表实际应用的三个示例:一个状态空间模型,一个嘈杂的Ising模型以及对人脑的磁共振图像(MRI)进行分段。 SAEM算法在找到每种情况下的空间随机效应模型的最大似然估计时给出令人满意的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号