首页> 外文期刊>Journal of statistical computation and simulation >Joint modelling of longitudinal and repeated time-to-event data using nonlinear mixed-effects models and the stochastic approximation expectation-maximization algorithm
【24h】

Joint modelling of longitudinal and repeated time-to-event data using nonlinear mixed-effects models and the stochastic approximation expectation-maximization algorithm

机译:使用非线性混合效应模型和随机逼近期望最大化算法对纵向和重复事件数据进行联合建模

获取原文
获取原文并翻译 | 示例

摘要

We propose a nonlinear mixed-effects framework to jointly model longitudinal and repeated time-to-event data. A parametric nonlinear mixed-effects model is used for the longitudinal observations and a parametric mixed-effects hazard model for repeated event times. We show the importance for parameter estimation of properly calculating the conditional density of the observations (given the individual parameters) in the presence of interval and/or right censoring. Parameters are estimated by maximizing the exact joint likelihood with the stochastic approximation expectation-maximization algorithm. This workflow for joint models is now implemented in the Monolix software, and illustrated here on five simulated and two real datasets.
机译:我们提出了一个非线性混合效应框架,以联合建模纵向事件数据和重复事件时间数据。纵向观测使用参数化非线性混合效应模型,重复事件时间使用参数化混合效应危害模型。我们显示了在存在间隔和/或右删失的情况下正确计算观测值的条件密度(给定各个参数)对参数估计的重要性。通过使用随机近似期望最大化算法最大化精确的联合似然来估计参数。现在,此联合模型工作流程已在Monolix软件中实现,并在五个仿真数据集和两个实际数据集上进行了说明。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号