首页> 外文期刊>IEEE Transactions on Reliability >Maximum-Likelihood Estimation of Parameters of NHPP Software Reliability Models Using Expectation Conditional Maximization Algorithm
【24h】

Maximum-Likelihood Estimation of Parameters of NHPP Software Reliability Models Using Expectation Conditional Maximization Algorithm

机译:使用期望条件最大化算法的NHPP软件可靠性模型参数的最大似然估计

获取原文
获取原文并翻译 | 示例

摘要

Since its introduction in 1977, the expectation maximization (EM) algorithm has been one of the most important and widely used estimation method in estimating parameters of distributions in the presence of incomplete information. In this paper, a variant of the EM algorithm, the expectation conditional maximization (ECM) algorithm, is introduced for the first time and it provides a promising alternative in estimating the parameters of nonhomogeneous poisson (NHPP) software reliability growth models (SRGM). This algorithm circumvents the difficult M-step of the EM algorithm by replacing it by a series of conditional maximization steps. The utility of the ECM approach is demonstrated in the estimation of parameters of several well-known models for both time domain and time interval software failure data. Numerical examples with real-data indicate that the ECM algorithm performs well in estimating parameters of NHPP SRGM with complex mean value functions and can produce a faster rate of convergence.
机译:自1977年推出以来,期望最大化(EM)算法一直是在信息不完整的情况下估计分布参数的最重要且广泛使用的估计方法之一。本文首次介绍了EM算法的一种变体,即期望条件最大化(ECM)算法,它为估计非均匀泊松(NHPP)软件可靠性增长模型(SRGM)的参数提供了有希望的替代方法。该算法通过用一系列条件最大化步骤代替EM算法的困难M步。 ECM方法的实用性在针对时域和时间间隔软件故障数据的几种知名模型的参数估计中得到了证明。带有实际数据的数值示例表明,ECM算法在估计具有复杂均值函数的NHPP SRGM参数方面表现良好,并且可以产生更快的收敛速度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号