首页> 外文期刊>Statistics and computing >Nonparametric particle filtering approaches for identification and inference in nonlinear state-space dynamic systems
【24h】

Nonparametric particle filtering approaches for identification and inference in nonlinear state-space dynamic systems

机译:非线性状态空间动力学系统中用于辨识和推理的非参数粒子滤波方法

获取原文
获取原文并翻译 | 示例

摘要

Most system identification approaches and statistical inference methods rely on the availability of the analytic knowledge of the probability distribution function of the system output variables. In the case of dynamic systems modelled by hidden Markov chains or stochastic nonlinear state-space models, these distributions as well as that of the state variables themselves, can be unknown or un-tractable. In that situation, the usual particle Monte Carlo filters for system identification or likelihood-based inference and model selection methods have to rely, whenever possible, on some hazardous approximations and are often at risk. This review shows how a recent nonparametric particle filtering approach can be efficiently used in that context, not only for consistent filtering of these systems but also to restore these statistical inference methods, allowing, for example, consistent particle estimation of Bayes factors or the generalisation of model parameter change detection sequential tests.Real-life applications of these particle approaches to a microbiological growth model are proposed as illustrations.
机译:大多数系统识别方法和统计推断方法都依赖于系统输出变量的概率分布函数的分析知识的可用性。在用隐马尔可夫链或随机非线性状态空间模型建模的动态系统中,这些分布以及状态变量本身的分布可能是未知的或难以处理的。在这种情况下,用于系统识别或基于似然性的推理和模型选择方法的常规粒子蒙特卡洛滤波器必须尽可能依赖某些危险的近似值,并且经常处于危险之中。这篇综述显示了如何在这种情况下有效地使用最新的非参数粒子滤波方法,不仅可以对这些系统进行一致的滤波,而且还可以恢复这些统计推断方法,例如,可以对Bayes因子进行一致的粒子估计或对模型参数变化检测顺序测试。提出了这些粒子方法在微生物生长模型中的实际应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号