首页> 外文期刊>Statistical science >Gaussianization Machines for Non-Gaussian Function Estimation Models
【24h】

Gaussianization Machines for Non-Gaussian Function Estimation Models

机译:非高斯函数估计模型的高斯机

获取原文
获取原文并翻译 | 示例

摘要

A wide range of nonparametric function estimation models have been studied individually in the literature. Among them the homoscedastic nonparametric Gaussian regression is arguably the best known and understood. Inspired by the asymptotic equivalence theory, Brown, Cai and Zhou (Ann. Statist. 36 (2008) 2055-2084; Ann. Statist. 38 (2010) 2005-2046) and Brown et al. (Probab. Theory Related Fields 146 (2010) 401-433) developed a unified approach to turn a collection of non-Gaussian function estimation models into a standard Gaussian regression and any good Gaussian nonparametric regression method can then be used.These Gaussianization Machines have two key components, binning and transformation. When combined with BlockJS, a wavelet thresholding procedure for Gaussian regression, the procedures are computationally efficient with strong theoretical guarantees. Technical analysis given in Brown, Cai and Zhou (Ann. Statist. 36 (2008) 2055-2084; Ann. Statist. 38 (2010) 2005-2046) and Brown et al. (Probab. Theory Related Fields 146 (2010) 401-433) shows that the estimators attain the optimal rate of convergence adaptively over a large set of Besov spaces and across a collection of non-Gaussian function estimation models, including robust nonparametric regression, density estimation, and nonparametric regression in exponential families. The estimators are also spatially adaptive.The Gaussianization Machines significantly extend the flexibility and scope of the theories and methodologies originally developed for the conventional nonparametric Gaussian regression. This article aims to provide a concise account of the Gaussianization Machines developed in Brown, Cai and Zhou (Ann. Statist. 36 (2008) 2055-2084; Ann. Statist. 38 (2010) 2005-2046), Brown et al. (Probab. Theory Related Fields 146 (2010) 401-433).
机译:文献中已经单独研究了各种各样的非参数函数估计模型。其中,同调非参数高斯回归可以说是最著名和最了解的。受渐进对等理论的启发,布朗,蔡和周(Ann。Statist。36(2008)2055-2084; Ann。Statist。38(2010)2005-2046)和Brown等。 (Probab.Theory Related Fields 146(2010)401-433)开发了一种统一方法,可将非高斯函数估计模型的集合转换为标准高斯回归,然后可以使用任何良好的高斯非参数回归方法。分箱和转换是两个关键组成部分。当与用于高斯回归的小波阈值处理程序BlockJS结合使用时,该程序在计算上非常有效,并具有强大的理论保证。 Brown,Cai和Zhou(Ann。Statist。36(2008)2055-2084; Ann。Statist。38(2010)2005-2046)和Brown等人(2007年)提供了技术分析。 (Probab。Theory Related Fields 146(2010)401-433)显示,估算器可在一大批Besov空间上以及整个非高斯函数估算模型(包括鲁棒的非参数回归,密度)中自适应地达到最佳收敛速度指数族的估计和非参数回归。估计器也具有空间适应性。高斯化机极大地扩展了最初为常规非参数高斯回归开发的理论和方法的灵活性和范围。本文旨在简要介绍一下Brown,Cai和Zhou开发的高斯化机(Ann。Statist。36(2008)2055-2084; Ann。Statist。38(2010)2005-2046),Brown等。 (Probab。Theory Related Fields 146(2010)401-433)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号