首页> 美国卫生研究院文献>other >Bayesian Estimation of Causal Direction in Acyclic Structural Equation Models with Individual-specific Confounder Variables and Non-Gaussian Distributions
【2h】

Bayesian Estimation of Causal Direction in Acyclic Structural Equation Models with Individual-specific Confounder Variables and Non-Gaussian Distributions

机译:具有特定个体混杂变量和非高斯分布的非循环结构方程模型中因果关系的贝叶斯估计

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Several existing methods have been shown to consistently estimate causal direction assuming linear or some form of nonlinear relationship and no latent confounders. However, the estimation results could be distorted if either assumption is violated. We develop an approach to determining the possible causal direction between two observed variables when latent confounding variables are present. We first propose a new linear non-Gaussian acyclic structural equation model with individual-specific effects that are sometimes the source of confounding. Thus, modeling individual-specific effects as latent variables allows latent confounding to be considered. We then propose an empirical Bayesian approach for estimating possible causal direction using the new model. We demonstrate the effectiveness of our method using artificial and real-world data.
机译:已经显示出几种现有的方法,它们在假设线性或某种形式的非线性关系且没有潜在的混杂因素的情况下一致地估计因果方向。但是,如果违反任一假设,估计结果可能会失真。当存在潜在的混杂变量时,我们开发了一种方法来确定两个观察到的变量之间可能的因果关系。我们首先提出一个新的线性非高斯非循环非结构性结构方程模型,该模型具有个别特定的影响,有时会造成混淆。因此,将个体特异性效应建模为潜在变量可以考虑潜在的混淆。然后,我们提出了一种经验贝叶斯方法,用于使用新模型估算可能的因果方向。我们使用人工和真实数据证明了我们方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号