首页> 外文期刊>Statistical Methods and Applications >Reconstructing missing data sequences in multivariate time series: an application to environmental data
【24h】

Reconstructing missing data sequences in multivariate time series: an application to environmental data

机译:重构多元时间序列中的缺失数据序列:对环境数据的应用

获取原文
获取原文并翻译 | 示例

摘要

Missing data arise in many statistical analyses, due to faults in data acquisition, and can have a significant effect on the conclusions that can be drawn from the data. In environmental data, for example, a standard approach usually adopted by the Environmental Protection Agencies to handle missing values is by deleting those observations with incomplete information from the study, obtaining a massive underestimation of many indexes usually used for evaluating air quality. In multivariate time series, moreover, it may happen that not only isolated values but also long sequences of some of the time series' components may miss. In such cases, it is quite impossible to reconstruct the missing sequences basing on the serial dependence structure alone. In this work, we propose a new procedure that aims to reconstruct the missing sequences by exploiting the spatial correlation and the serial correlation of the multivariate time series, simultaneously. The proposed procedure is based on a spatial-dynamic model and imputes the missing values in the time series basing on a linear combination of the neighbor contemporary observations and their lagged values. It is specifically oriented to spatio-temporal data, although it is general enough to be applied to generic stationary multivariate time-series. In this paper, the procedure has been applied to the pollution data, where the problem of missing sequences is of serious concern, with remarkably satisfactory performance.
机译:由于数据采集中的错误,许多统计分析中都会出现数据丢失的情况,这些数据可能会对从数据得出的结论产生重大影响。例如,在环境数据中,环境保护机构通常采用的处理缺失值的标准方法是删除研究中信息不完整的观测值,从而大大低估了通常用于评估空气质量的许多指标。此外,在多元时间序列中,不仅可能出现孤立值,而且可能丢失某些时间序列成分的长序列。在这种情况下,仅基于序列依赖性结构来重建缺失序列是完全不可能的。在这项工作中,我们提出了一种旨在通过同时利用多元时间序列的空间相关性和序列相关性来重建缺失序列的新程序。所提出的过程基于空间动力学模型,并基于相邻当代观测值及其滞后值的线性组合来估算时间序列中的缺失值。尽管它足够通用以适用于通用平稳多元时间序列,但它专门针对时空数据。在本文中,该程序已应用于污染数据,其中缺失序列的问题受到严重关注,并且性能非常令人满意。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号