首页> 外文期刊>Knowledge-Based Systems >DTDR-ALSTM: Extracting dynamic time-delays to reconstruct multivariate data for improving attention-based LSTM industrial time series prediction models
【24h】

DTDR-ALSTM: Extracting dynamic time-delays to reconstruct multivariate data for improving attention-based LSTM industrial time series prediction models

机译:DTDR-ALSTM:提取动态时滞以重建多变量数据以改善基于关注的LSTM工业时间序列预测模型

获取原文
获取原文并翻译 | 示例

摘要

Taking advantage of varying degrees of attention on specific features, attention-based long short-term memory (ALSTM) networks have made inroads into the industrial multivariate time series prediction sector recently. However, conventional ALSTM models usually employ static time-delays to constant select input/output pairings of multivariate data, which apparently ignores dynamics of transmission time between industrial process variables and degrades the prediction performance by incorrectly extracting process characteristics. In response to this problem, this paper proposes a novel approach to extracting dynamic time-delays to reconstruct (DTDR) multivariate data for an improved ALSTM prediction model. Therein, the temporal locations and spans of multivariate data are adaptively tailored to input/output pairings of the ALSTM network according to the dynamic time-delays. Specifically, the multivariate data can be accurately matched in temporal positions, and the data information in the original temporal spans with Status transfer time abnormal are replaced. Consequently, this prediction model not only appropriately utilizes dynamics between the predicting and correlated variables, but also makes better attentions on key features extracted from optimum data. Applied to industrial distillation and methanol production processes, the proposed method demonstrates the capability of significantly improving network training speeds as well as prediction accuracies in contrast to static time-delay based ALSTM and LSTM models, expecting even more applications. (C) 2020 Elsevier B.V. All rights reserved.
机译:利用对特定特征的不同程度的关注,基于关注的长短期记忆(ALSTM)网络最近已经进入了工业多元时间序列预测部门。然而,传统的ALSTM模型通常采用静态时间延迟来恒定选择多变量数据的输入/输出配对,这显然忽略了工业过程变量之间传输时间的动态,并通过错误提取过程特征来降低预测性能。为了响应于这个问题,本文提出了一种提取动态时间延迟的新方法来改进的Alstm预测模型重构(DTDR)多变量数据。其中,根据动态时间延迟,在Alstm网络的输入/输出配对时,时间位置和多变量数据的跨度被自适应地定制到ALSTM网络的输入/输出配对。具体地,多变量数据可以在时间位置准确地匹配,并且替换了具有状态传送时间异常的原始时间跨度中的数据信息。因此,该预测模型不仅适当地利用预测和相关变量之间的动态,而且还可以更好地注意从最佳数据提取的关键特征。应用于工业蒸馏和甲醇生产过程,所提出的方法展示了与基于静态时滞的Alstm和LSTM模型相比,显着提高网络训练速度以及预测准确性的能力,期望更多的应用。 (c)2020 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号