首页> 外文期刊>Statistical Methods and Applications >Space-time short- to medium-term wind speed forecasting
【24h】

Space-time short- to medium-term wind speed forecasting

机译:时空中短期风速预报

获取原文
获取原文并翻译 | 示例

摘要

Accurate wind power forecasts depend on reliable wind speed forecasts. Numerical weather predictions utilize huge amounts of computing time, but still have rather low spatial and temporal resolution. However, stochastic wind speed forecasts perform well in rather high temporal resolution settings. They consume comparably little computing resources and return reliable forecasts, if forecasting horizons are not too long. In the recent literature, spatial interdependence is increasingly taken into consideration. In this paper we propose a new and quite flexible multivariate model that accounts for neighbouring weather stations' information and as such, exploits spatial data at a high resolution. The model is applied to forecasting horizons of up to 1 day and is capable of handling a high resolution temporal structure. We use a periodic vector autoregressive model with seasonal lags to account for the interaction of the explanatory variables. Periodicity is considered and is modelled by cubic B-splines. Due to the model's flexibility, the number of explanatory variables becomes huge. Therefore, we utilize time-saving shrinkage methods like lasso and elastic net for estimation. Particularly, a relatively newly developed iteratively re-weighted lasso and elastic net is applied that also incorporates heteroscedasticity. We compare our model to several benchmarks. The out-of-sample forecasting results show that the exploitation of spatial information increases the forecasting accuracy tremendously, in comparison to models in use so far.
机译:准确的风能预测取决于可靠的风速预测。数值天气预报使用大量的计算时间,但仍具有相当低的空间和时间分辨率。但是,随机风速预测在相当高的时间分辨率设置下效果很好。如果预测时间间隔不太长,它们将消耗相对较少的计算资源并返回可靠的预测。在最近的文献中,越来越多地考虑了空间相互依赖性。在本文中,我们提出了一个新的且非常灵活的多元模型,该模型考虑了邻近气象站的信息,因此以高分辨率利用空间数据。该模型可用于长达1天的预测范围,并且能够处理高分辨率的时间结构。我们使用带有季节滞后的周期矢量自回归模型来解释解释变量的相互作用。考虑周期性,并通过三次B样条对其建模。由于模型的灵活性,解释变量的数量变得巨大。因此,我们利用套索和弹性网等省时的收缩方法进行估算。特别地,应用了相对较新开发的迭代重新加权的套索和弹性网,其还具有异方差性。我们将我们的模型与几个基准进行比较。样本外预测结果表明,与迄今为止使用的模型相比,空间信息的利用极大地提高了预测准确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号