首页> 外文期刊>Statistical Methods and Applications >Effect of autocorrelation when estimating the trend of a time series via penalized least squares with controlled smoothness
【24h】

Effect of autocorrelation when estimating the trend of a time series via penalized least squares with controlled smoothness

机译:通过具有受控平滑度的惩罚最小二乘法估计时间序列趋势时的自相关效应

获取原文
获取原文并翻译 | 示例

摘要

This paper studies the effect of autocorrelation on the smoothness of the trend of a univariate time series estimated by means of penalized least squares. An index of smoothness is deduced for the case of a time series represented by a signal-plus-noise model, where the noise follows an autoregressive process of order one. This index is useful for measuring the distortion of the amount of smoothness by incorporating the effect of autocorrelation. Different autocorrelation values are used to appreciate the numerical effect on smoothness for estimated trends of time series with different sample sizes. For comparative purposes, several graphs of two simulated time series are presented, where the estimated trend is compared with and without autocorrelation in the noise. Some findings are as follows, on the one hand, when the autocorrelation is negative (no matter how large) or positive but small, the estimated trend gets very close to the true trend. Even in this case, the estimation is improved by fixing the index of smoothness according to the sample size. On the other hand, when the autocorrelation is positive and large the simulated and estimated trends lie far away from the true trend. This situation is mitigated by fixing an appropriate index of smoothness for the estimated trend in accordance to the sample size at hand. Finally, an empirical example serves to illustrate the use of the smoothness index when estimating the trend of Mexico's quarterly GDP.
机译:本文研究了自相关对通过惩罚最小二乘估计的单变量时间序列趋势的平滑度的影响。对于由信号加噪声模型表示的时间序列,推导了平滑度指标,其中噪声遵循一阶自回归过程。该指数可通过结合自相关效应来测量平滑度的失真。对于不同样本量的时间序列估计趋势,使用不同的自相关值来评估对平滑度的数值影响。为了进行比较,给出了两个模拟时间序列的几幅图,其中比较了在有噪声和无噪声的情况下估计趋势。一些发现如下:一方面,当自相关为负(无论大小)还是正但小时,估计趋势非常接近真实趋势。即使在这种情况下,也可以通过根据样本大小固定平滑度指标来改善估计。另一方面,当自相关为正且较大时,模拟趋势和估计趋势与真实趋势相去甚远。通过根据手头的样本大小为估计趋势固定适当的平滑度指标,可以缓解这种情况。最后,一个经验例子可以说明在估计墨西哥季度GDP趋势时使用平滑度指数的情况。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号