首页> 外文期刊>Communications in Statistics >Trend smoothness achieved by penalized least squares with the smoothing parameter chosen by optimality criteria
【24h】

Trend smoothness achieved by penalized least squares with the smoothing parameter chosen by optimality criteria

机译:通过优化标准选择的平滑参数,通过惩罚最小二乘法实现趋势平滑

获取原文
获取原文并翻译 | 示例

摘要

This work presents a study about the smoothness attained by the methods more frequently used to choose the smoothing parameter in the context of splines: Cross Validation, Generalized Cross Validation, and corrected Akaike and Bayesian Information Criteria, implemented with Penalized Least Squares. It is concluded that the amount of smoothness strongly depends on the length of the series and on the type of underlying trend, while the presence of seasonality even though statistically significant is less relevant. The intrinsic variability of the series is not statistically significant and its effect is taken into account only through the smoothing parameter.
机译:这项工作提出了一项关于通过样条上下文更常用的选择平滑参数的方法获得的平滑度的研究:交叉验证,广义交叉验证以及校正后的Akaike和贝叶斯信息准则,并用惩罚最小二乘法实现。得出的结论是,平滑度的大小很大程度上取决于序列的长度和基本趋势的类型,而季节性的存在(尽管在统计上具有显着意义)则不那么重要。该序列的内在变异性在统计上不显着,仅通过平滑参数考虑其影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号