首页> 外文期刊>Statistical Methodology >Vector autoregressive models with measurement errors for testing Granger causality
【24h】

Vector autoregressive models with measurement errors for testing Granger causality

机译:具有测量误差的矢量自回归模型,用于测试Granger因果关系

获取原文
获取原文并翻译 | 示例

摘要

This paper develops a method for estimating the parameters of a vector autoregression (VAR) observed in white noise. The estimation method assumes that the noise variance matrix is known and does not require any iterative process. This study provides consistent estimators and the asymptotic distribution of the parameters required for conducting tests of Granger causality. Methods in the existing statistical literature cannot be used for testing Granger causality, since under the null hypothesis the model becomes unidentifiable. Measurement error effects on parameter estimates were evaluated by using computational simulations. The results suggest that the proposed approach produces empirical false positive rates close to the adopted nominal level (even for small samples) and has a satisfactory performance around the null hypothesis. The applicability and usefulness of the proposed approach are illustrated using a functional magnetic resonance imaging dataset.
机译:本文提出了一种估计在白噪声中观察到的向量自回归(VAR)参数的方法。该估计方法假设噪声方差矩阵是已知的,并且不需要任何迭代过程。这项研究为进行格兰杰因果关系检验提供了一致的估计量和所需参数的渐近分布。现有统计资料中的方法不能用于检验Granger因果关系,因为在原假设下该模型变得无法识别。通过使用计算模拟来评估测量误差对参数估计值的影响。结果表明,所提出的方法产生的经验假阳性率接近采用的名义水平(即使对于小样本),并且在原假设周围具有令人满意的性能。使用功能性磁共振成像数据集说明了该方法的适用性和实用性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号