首页> 外文期刊>Statistical Methodology >Bayesian covariance estimation and inference in latent Gaussian process models
【24h】

Bayesian covariance estimation and inference in latent Gaussian process models

机译:潜在高斯过程模型中的贝叶斯协方差估计和推断

获取原文
获取原文并翻译 | 示例

摘要

This paper describes inference methods for functional data under the assumption that the functional data of interest are smooth latent functions, characterized by a Gaussian process, which have been observed with noise over a finite set of time points. The methods we propose are completely specified in a Bayesian environment that allows for all inferences to be performed through a simple Gibbs sampler. Our main focus is in estimating and describing uncertainty in the covariance function. However, these models also encompass functional data estimation, functional regression where the predictors are latent functions, and an automatic approach to smoothing parameter selection. Furthermore, these models require minimal assumptions on the data structure as the time points for observations do not need to be equally spaced, the number and placement of observations are allowed to vary among functions, and special treatment is not required when the number of functional observations is less than the dimensionality of those observations. We illustrate the effectiveness of these models in estimating latent functional data, capturing variation in the functional covariance estimate, and in selecting appropriate smoothing parameters in both a simulation study and a regression analysis of medfly fertility data.
机译:本文在假设感兴趣的功能数据是平滑的潜函数(以高斯过程为特征)的前提下,描述了功能数据的推理方法,并在有限的时间点上观察到了噪声。我们提出的方法是在贝叶斯环境中完全指定的,该环境允许通过简单的Gibbs采样器执行所有推断。我们的主要重点是估计和描述协方差函数中的不确定性。但是,这些模型还包含功能数据估计,预测变量为潜在函数的功能回归以及用于平滑参数选择的自动方法。此外,这些模型需要对数据结构进行最小假设,因为观察的时间点不必等距分布,观察的数量和位置可以随功能而变化,并且当功能观察的数量众多时,不需要特殊处理小于这些观察的维数。我们说明了这些模型在估计潜在功能数据,捕获功能协方差估计中的变化以及在模拟研究和地中海果蝇育性数据的回归分析中选择合适的平滑参数方面的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号