首页> 外文期刊>Machine Learning >Pseudo-marginal Bayesian inference for Gaussian process latent variable models
【24h】

Pseudo-marginal Bayesian inference for Gaussian process latent variable models

机译:伪边缘贝叶斯推断高斯过程潜在变量模型

获取原文
获取原文并翻译 | 示例

摘要

A Bayesian inference framework for supervised Gaussian process latent variable models is introduced. The framework overcomes the high correlations between latent variables and hyperparameters by collapsing the statistical model through approximate integration of the latent variables. Using an unbiased pseudo estimate for the marginal likelihood, the exact hyperparameter posterior can then be explored using collapsed Gibbs sampling and, conditional on these samples, the exact latent posterior can be explored through elliptical slice sampling. The framework is tested on both simulated and real examples. When compared with the standard approach based on variational inference, this approach leads to significant improvements in the predictive accuracy and quantification of uncertainty, as well as a deeper insight into the challenges of performing inference in this class of models.
机译:介绍了监督高斯过程潜在变量模型的贝叶斯推断框架。 该框架通过近似集成潜在变量的近似集成来克服潜伏变量和超参数之间的高相关。 使用对边缘似然的无偏见的伪估计,然后可以使用折叠的GIBBS采样来探索确切的近双峰,并且在这些样品上有条件,可以通过椭圆形切片采样来探索精确的潜在后验。 框架在模拟和实际示例上进行测试。 与基于变分推论的标准方法相比,这种方法导致了对不确定度的预测准确性和量化的显着改善,以及更深入地了解在这类模型中对执行推断的挑战。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号