首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Coordinate transformation and Polynomial Chaos for the Bayesian inference of a Gaussian process with parametrized prior covariance function
【24h】

Coordinate transformation and Polynomial Chaos for the Bayesian inference of a Gaussian process with parametrized prior covariance function

机译:参数化先验协方差函数的高斯过程的贝叶斯推断的坐标变换和多项式混沌

获取原文
获取原文并翻译 | 示例

摘要

This paper addresses model dimensionality reduction for Bayesian inference based on prior Gaussian fields with uncertainty in the covariance function hyper-parameters. The dimensionality reduction is traditionally achieved using the Karhunen-Loeve expansion of a prior Gaussian process assuming covariance function with fixed hyper-parameters, despite the fact that these are uncertain in nature. The posterior distribution of the Karhunen-Loeve coordinates is then inferred using available observations. The resulting inferred field is therefore dependent on the assumed hyper-parameters. Here, we seek to efficiently estimate both the field and covariance hyper-parameters using Bayesian inference. To this end, a generalized Karhunen-Loeve expansion is derived using a coordinate transformation to account for the dependence with respect to the covariance hyper-parameters. Polynomial Chaos expansions are employed for the acceleration of the Bayesian inference using similar coordinate transformations, enabling us to avoid expanding explicitly the solution dependence on the uncertain hyper-parameters. We demonstrate the feasibility of the proposed method on a transient diffusion equation by inferring spatially-varying log-diffusivity fields from noisy data. The inferred profiles were found closer to the true profiles when including the hyper-parameters' uncertainty in the inference formulation. (C) 2015 Elsevier B.V. All rights reserved.
机译:本文针对具有协方差函数超参数不确定性的先验高斯场,提出了针对贝叶斯推理的模型降维方法。传统上,降维是使用先验的高斯过程的Karhunen-Loeve展开来实现的,该过程假设协方差函数具有固定的超参数,尽管事实上这些不确定性。然后使用可用的观测值推断Karhunen-Loeve坐标的后验分布。因此,得出的推断字段取决于假定的超参数。在这里,我们试图使用贝叶斯推断有效地估计场和协方差超参数。为此,使用坐标变换来推导广义的Karhunen-Loeve展开,以解决关于协方差超参数的依赖性。使用多项式混沌展开来使用相似的坐标变换来加速贝叶斯推断,从而使我们能够避免明确扩展对不确定超参数的解依赖。通过从噪声数据中推断空间变化的对数扩散场,我们证明了该方法在暂态扩散方程上的可行性。当将超参数的不确定性包括在推论公式中时,发现推论曲线与真实曲线更接近。 (C)2015 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号