首页> 外文期刊>IEEE Transactions on Software Engineering >Statistical inference for general-order-statistics and nonhomogeneous-Poisson-process software reliability models
【24h】

Statistical inference for general-order-statistics and nonhomogeneous-Poisson-process software reliability models

机译:用于一般顺序统计和非均匀泊松过程软件可靠性模型的统计推断

获取原文
获取原文并翻译 | 示例

摘要

There are many software reliability models that are based on the times of occurrences of errors in the debugging of software. It is shown that it is possible to do asymptotic likelihood inference for software reliability models based on order statistics or nonhomogeneous Poisson processes, with asymptotic confidence levels for interval estimates of parameters. In particular, interval estimates from these models are obtained for the conditional failure rate of the software, given the data from the debugging process. The data can be grouped or ungrouped. For someone making a decision about when to market software, the conditional failure rate is an important parameter. The use of interval estimates is demonstrated for two data sets that have appeared in the literature.
机译:有许多软件可靠性模型是基于软件调​​试中错误发生的时间。结果表明,可以基于阶次统计量或非均匀泊松过程,针对软件可靠性模型进行渐近似然推断,并采用渐近置信度进行参数区间估计。特别是,给定调试过程中的数据,就可以从这些模型的间隔估计中获得软件的条件故障率。数据可以分组或取消分组。对于决定何时销售软件的人而言,条件故障率是一个重要参数。文献中出现的两个数据集证明了区间估计的使用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号