首页> 外文期刊>Soft Computing >Type-2 hierarchical fuzzy system for high-dimensional data-based modeling with uncertainties
【24h】

Type-2 hierarchical fuzzy system for high-dimensional data-based modeling with uncertainties

机译:用于不确定数据的高维数据建模的类型2层次模糊系统

获取原文
获取原文并翻译 | 示例

摘要

A type-2 hierarchical fuzzy system (T2HFS) is presented for the high-dimensional data-based modeling with uncertainties. Type-2 fuzzy logic system (T2FLS) is a powerful tool to handle uncertainties in complex processes. However, the operation of type-reduction has greatly increased the computational burden of T2FLSs. By integrating the T2FLS with hierarchical structure, a systematic design methodology of T2HFS is proposed to avoid the rule explosion and to simplify the computation complexity. The design methodology has included several procedures to establish the T2HFS. Firstly, the PCA-based method is developed to capture the prominent component from training data, and to determine the hierarchical structure of T2HFS. Furthermore, a novel clustering method is proposed to design the basic type-2 fuzzy logic unit (T2FLU) in uncertain environments. Finally, a hybrid-learning method is presented to fine-tune the parameters for the global optimization where the statistical and deterministic optimization methods are developed for the nominal and auxiliary performance, respectively. Simulation results have shown that the proposed T2HFS is very effective for the high-dimensional data-based modeling and control in uncertain environment.
机译:针对具有不确定性的基于高维数据的建模,提出了一种类型2层次模糊系统(T2HFS)。 Type-2模糊逻辑系统(T2FLS)是处理复杂过程中不确定性的强大工具。但是,类型减少的操作大大增加了T2FLS的计算负担。通过将T2FLS与分层结构集成在一起,提出了一种T2HFS的系统设计方法,以避免规则爆炸并简化计算复杂度。设计方法论包括建立T2HFS的几种程序。首先,开发了基于PCA的方法以从训练数据中捕获突出的组件,并确定T2HFS的层次结构。此外,提出了一种新颖的聚类方法来设计不确定环境中的基本2型模糊逻辑单元(T2FLU)。最后,提出了一种混合学习方法来微调全局优化的参数,其中分别针对标称性能和辅助性能开发了统计和确定性优化方法。仿真结果表明,所提出的T2HFS对于不确定环境下的高维数据建模和控制非常有效。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号