首页> 外文期刊>Soft Computing - A Fusion of Foundations, Methodologies and Applications >Crowdsourcing techniques to create a fuzzy subset of SNOMED CT for semantic tagging of medical documents
【24h】

Crowdsourcing techniques to create a fuzzy subset of SNOMED CT for semantic tagging of medical documents

机译:众包技术创建SNOMED CT的模糊子集,用于医学文档的语义标记

获取原文
获取原文并翻译 | 示例

摘要

Ontologies and other schemes are useful for allowing semantic tagging of documents for many applications on the semantic web. Representing uncertainty on the semantic web is becoming increasingly common, using ontologies and other techniques. Ontology and declarative tools allow documents using concepts contained in these ontologies to be reasoned about using computer systems. Very large ontologies and vocabularies have been created; however, users may find it difficult to select the correct concept or term when there are large numbers of items that on face value appear to represent the same idea. Creating subsets of ontologies is a popular approach to solve this problem but this may not fit well with the need to deal with complex domains. However, crowdsourcing techniques, which harness the power of large groups, may be more effective than document analysis or expert opinion. In crowdsourcing, large numbers of people collaborate by performing relatively simple tasks usually using applications distributed via the World Wide Web. This approach is being tested in the medical domain using a very large clinical vocabulary, SNOMED CT.
机译:本体和其他方案可用于允许语义网络上许多应用程序对文档进行语义标记。使用本体论和其他技术,在语义网上表示不确定性变得越来越普遍。本体和声明性工具允许使用这些本体中包含的概念的文档被推理为使用计算机系统。已经创建了非常庞大的本体和词汇表;但是,当有很多物品的票面价值看来代表相同的想法时,用户可能会难以选择正确的概念或术语。创建本体的子集是解决此问题的一种流行方法,但这可能与处理复杂域的需求不太吻合。但是,利用大型团体力量的众包技术可能比文档分析或专家意见更为有效。在众包中,许多人通常通过使用通过万维网分发的应用程序执行相对简单的任务来进行协作。正在使用非常大的临床词汇SNOMED CT在医学领域对该方法进行测试。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号