首页> 外文期刊>Smart Grid, IEEE Transactions on >Load Curve Data Cleansing and Imputation Via Sparsity and Low Rank
【24h】

Load Curve Data Cleansing and Imputation Via Sparsity and Low Rank

机译:通过稀疏和低等级对负荷曲线数据进行清理和归因

获取原文
获取原文并翻译 | 示例

摘要

The smart grid vision is to build an intelligent power network with an unprecedented level of situational awareness and controllability over its services and infrastructure. This paper advocates statistical inference methods to robustify power monitoring tasks against the outlier effects owing to faulty readings and malicious attacks, as well as against missing data due to privacy concerns and communication errors. In this context, a novel load cleansing and imputation scheme is developed leveraging the low intrinsic-dimensionality of spatiotemporal load profiles and the sparse nature of “bad data.” A robust estimator based on principal components pursuit (PCP) is adopted, which effects a twofold sparsity-promoting regularization through an $ell_1$-norm of the outliers, and the nuclear norm of the nominal load profiles. Upon recasting the non-separable nuclear norm into a form amenable to decentralized optimization, a distributed (D-) PCP algorithm is developed to carry out the imputation and cleansing tasks using networked devices comprising the so-termed advanced metering infrastructure. If D-PCP converges and a qualification inequality is satisfied, the novel distributed estimator provably attains the performance of its centralized PCP counterpart, which has access to all networkwide data. Computer simulations and tests with real load curve data corroborate the convergence and effectiveness of the novel D-PCP algorithm.
机译:智能电网的愿景是建立一种智能电力网络,使其对服务和基础设施的态势感知和可控性达到前所未有的水平。本文提倡采用统计推断方法,以针对由于错误的读数和恶意攻击而导致的异常影响,以及针对由于隐私问题和通信错误而导致的数据丢失,来增强电源监视任务的能力。在这种情况下,利用时空负荷分布的低固有维数和“不良数据”的稀疏性,开发了一种新颖的负荷清洁和估算方案。采用了基于主成分追踪(PCP)的鲁棒估计器,该估计器通过异常值的$ ell_1 $范数和名义负荷曲线的核范数实现了双重稀疏性正则化。在将不可分离的核规范重新铸成适合分散优化的形式后,开发了一种分布式(D-)PCP算法,以使用包括所谓的高级计量基础设施的网络设备来执行归算和清洁任务。如果D-PCP收敛并且满足资格不等式,则新颖的分布式估计器可证明达到其集中式PCP对应对象的性能,后者可以访问所有网络范围的数据。使用实际载荷曲线数据的计算机仿真和测试证实了新型D-PCP算法的收敛性和有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号