首页> 外文期刊>Signal Processing, IEEE Transactions on >Robust Nonparametric Regression via Sparsity Control With Application to Load Curve Data Cleansing
【24h】

Robust Nonparametric Regression via Sparsity Control With Application to Load Curve Data Cleansing

机译:通过稀疏控制的鲁棒非参数回归及其在载荷曲线数据清洗中的应用

获取原文
获取原文并翻译 | 示例

摘要

Nonparametric methods are widely applicable to statistical inference problems, since they rely on a few modeling assumptions. In this context, the fresh look advocated here permeates benefits from variable selection and compressive sampling, to robustify nonparametric regression against outliers—that is, data markedly deviating from the postulated models. A variational counterpart to least-trimmed squares regression is shown closely related to an $ell_{0}$-(pseudo)norm-regularized estimator, that encourages sparsity in a vector explicitly modeling the outliers. This connection suggests efficient solvers based on convex relaxation, which lead naturally to a variational M-type estimator equivalent to the least-absolute shrinkage and selection operator (Lasso). Outliers are identified by judiciously tuning regularization parameters, which amounts to controlling the sparsity of the outlier vector along the whole robustification path of Lasso solutions. Reduced bias and enhanced generalization capability are attractive features of an improved estimator obtained after replacing the $ell_{0}$-(pseudo)norm with a nonconvex surrogate. The novel robust spline-based smoother is adopted to cleanse load curve data, a key task aiding operational decisions in the envisioned smart grid system. Computer simulations and tests on real load curve data corroborate the effectiveness of the novel sparsity-controlling robust estimators.
机译:由于非参数方法依赖于一些建模假设,因此它们可广泛应用于统计推断问题。在这种情况下,这里提倡的新颖外观渗透了变量选择和压缩采样的好处,以增强针对异常值的非参数回归(即,数据明显偏离假定模型)。与最小修剪平方回归的变体对应关系显示为与$ ell_ {0} $-(伪)范数正则化估计量密切相关,该值鼓励显式建模异常值的向量的稀疏性。这种联系表明基于凸松弛的有效求解器,自然会导致等效于最小绝对收缩和选择算子(Lasso)的变分M型估计器。通过明智地调整正则化参数来识别离群值,这相当于沿着Lasso解的整个鲁棒化路径控制离群向量的稀疏性。减少偏倚和增强泛化能力是在用非凸代理替换$ ell_ {0} $-(伪)范数后获得的一种改进估计量的吸引人的特征。采用新颖的基于样条曲线的鲁棒平滑器来清理负荷曲线数据,这是帮助设想的智能电网系统中的操作决策的关键任务。对实际载荷曲线数据的计算机模拟和测试证实了新颖的稀疏控制鲁棒估计器的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号