首页> 外文期刊>Transportation research >Scalable low-rank tensor learning for spatiotemporal traffic data imputation
【24h】

Scalable low-rank tensor learning for spatiotemporal traffic data imputation

机译:用于时空交通数据估算的可扩展低级别学习

获取原文
获取原文并翻译 | 示例
           

摘要

Missing value problem in spatiotemporal traffic data has long been a challenging topic, in particular for large-scale and high-dimensional data with complex missing mechanisms and diverse degrees of missingness. Recent studies based on tensor nuclear norm have demonstrated the superiority of tensor learning in imputation tasks by effectively characterizing the complex correlations/dependencies in spatiotemporal data. However, despite the promising results, these approaches do not scale well to large data tensors. In this paper, we focus on addressing the missing data imputation problem for large-scale spatiotemporal traffic data. To achieve both high accuracy and efficiency, we develop a scalable tensor learning model-Low-Tubal-Rank Smoothing Tensor Completion (LSTC-Tubal)-based on the existing framework of Low-Rank Tensor Completion, which is well-suited for spatiotemporal traffic data that is characterized by multidimensional structure of location x time of day x day. In particular, the proposed LSTC-Tubal model involves a scalable tensor nuclear norm minimization scheme by integrating linear unitary transformation. Therefore, tensor nuclear norm minimization can be solved by singular value thresholding on the transformed matrix of each day while the day-to-day correlation can be effectively preserved by the unitary transform matrix. Before setting up the experiment, we consider some real-world data sets, including two large-scale 5-min traffic speed data sets collected by the California PeMS system with 11160 sensors: 1) PeMS-4W covers the data over 4 weeks (i.e., 288 x 28 time points), and 2) PeMS-8W covers the data over 8 weeks (i.e., 288 x 56 time points). We compare LSTC-Tubal with some state-of-the-art baseline models, and find that LSTC-Tubal can achieve competitively accuracy with a significantly lower computational cost. In addition, the LSTC-Tubal will also benefit other tasks in modeling large-scale spatiotemporal traffic data, such as network-level traffic forecasting.
机译:Spatiotemporal交通数据中缺失的价值问题长期以来一直是一个具有挑战性的话题,特别是对于大规模和高维数据,具有复杂的缺失机制和不同程度的缺失。基于张量核规范的最近研究已经通过有效地表征了时尚数据中的复杂相关性/依赖性,证明了张量学习的优越性。然而,尽管结果有希望的结果,但这些方法对大数据张量没有很好地扩展。在本文中,我们专注于解决大规模时空交通数据的缺失数据归咎问题。为实现高精度和效率,我们开发可扩展的张量学习模型 - 低管级平滑的张力完成(LSTC管) - 基于现有的低级张量完成框架,这很适合时尚交通数据,其特征在于多维结构的位置X时间X天。特别地,所提出的LSTC输卵管模型通过整合线性酉变换来涉及可扩展的张量核规范最小化方案。因此,可以通过每天的转化矩阵对每天的转化基质的奇异值阈值阈值来解决张量核规范最小化,同时可以通过单一变换矩阵有效地保留日常的相关性。在设置实验之前,我们考虑一些现实世界数据集,包括由加州PEMS系统收集的两个大规模的5分钟交通速度数据集,其中包含11160个传感器:1)PEMS-4W涵盖4周(即,288 x 28时间点)和2)PEMS-8W涵盖超过8周(即288 x 56时间点)的数据。我们将LSTC管与某些最先进的基线模型进行比较,发现LSTC-TUBAL可以以显着较低的计算成本实现竞争力的准确性。此外,LSTC-Tubalal还将有益于建模大规模时空交通数据的其他任务,例如网络级流量预测。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号