首页> 外文期刊>ESAIM >DYNAMIC PROGRAMMING PRINCIPLE AND ASSOCIATED HAMILTON-JACOBI-BELLMAN EQUATION FOR STOCHASTIC RECURSIVE CONTROL PROBLEM WITH NON-LIPSCHITZ AGGREGATOR
【24h】

DYNAMIC PROGRAMMING PRINCIPLE AND ASSOCIATED HAMILTON-JACOBI-BELLMAN EQUATION FOR STOCHASTIC RECURSIVE CONTROL PROBLEM WITH NON-LIPSCHITZ AGGREGATOR

机译:具有非Lipchitz积分器的随机递推控制问题的动态规划原理和相关的HAMILTON-JACOBI-BELLMAN方程

获取原文
获取原文并翻译 | 示例

摘要

In this work we study the stochastic recursive control problem, in which the aggregator (or generator) of the backward stochastic differential equation describing the running cost is continuous but not necessarily Lipschitz with respect to the first unknown variable and the control, and monotonic with respect to the first unknown variable. The dynamic programming principle and the connection between the value function and the viscosity solution of the associated Hamilton-Jacobi-Bellman equation are established in this setting by the generalized comparison theorem for backward stochastic differential equations and the stability of viscosity solutions. Finally we take the control problem of continuous time Epstein Zin utility with non-Lipschitz aggregator as an example to demonstrate the application of our study.
机译:在这项工作中,我们研究了随机递归控制问题,其中描述运行成本的向后随机微分方程的集合(或生成器)是连续的,但相对于第一个未知变量和控制,Lipschitz不一定是连续的,相对于单调的到第一个未知变量。在这种情况下,通过后向随机微分方程的广义比较定理和粘性溶液的稳定性,建立了相关联的Hamilton-Jacobi-Bellman方程的动态规划原理以及值函数与粘性溶液之间的联系。最后,以非Lipschitz聚合器为例,以连续时间爱泼斯坦锌效用的控制问题为例,说明了本研究的应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号