首页> 外文期刊>Signal processing >Time-varying spectral analysis in neurophysiological time series using Hilbert wavelet pairs
【24h】

Time-varying spectral analysis in neurophysiological time series using Hilbert wavelet pairs

机译:基于希尔伯特小波对的神经生理时间序列的时变光谱分析

获取原文
获取原文并翻译 | 示例

摘要

An analytic wavelet transform, based on Hilbert wavelet pairs, is applied to bivariate time-varying spectral estimation for neurophysiological time series. Under the assumption of an underlying block stationary process, both single-trial and ensemble studies are amenable to this method. A bootstrap procedure, which samples with replacement blocks centered around the events of interest, is proposed to identify time points for which the event-averaged magnitude squared coherence is non-zero. Clinical data sets are used to compare the wavelet-based technique with the classical Fourier-based spectral measures and highlight its ability to detect time-varying coherence and phase properties.
机译:基于希尔伯特小波对的解析小波变换应用于神经生理学时间序列的双变量时变谱估计。在潜在的块固定过程的假设下,单次试验和整体研究均适用于此方法。提出了一种引导程序,该程序以替换块为中心对感兴趣的事件进行采样,以识别事件平均幅度平方相关性不为零的时间点。临床数据集用于将基于小波的技术与基于经典傅立叶的频谱测量进行比较,并强调其检测时变相干和相位特性的能力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号