首页> 外文期刊>Signal processing >A unifying model for blind separation of independent sources
【24h】

A unifying model for blind separation of independent sources

机译:盲目分离独立来源的统一模型

获取原文
获取原文并翻译 | 示例

摘要

Many algorithms have been proposed for the blind separation- of statistically independent sources. Most of the algorithms are based on one of the following properties: nongaussianity of the sources, their different autocorrelations, or their smoothly changing nonstationary variances. Each of the methods is able to separate sources if the respective assumptions are met. Here we propose a simple unifying model that is able to separate independent sources if any one of these three conditions is met. The model is a simple autoregressive model whose estimation can be performed by maximum likelihood estimation. We also propose a simple yet accurate approximation of the likelihood that gives a simple algorithm.
机译:已经提出了许多用于统计独立源的盲分离的算法。大多数算法基于以下特性之一:源的非高斯性,其不同的自相关或平滑变化的非平稳方差。如果满足各自的假设,则每种方法都可以分离来源。在这里,我们提出一个简单的统一模型,如果满足这三个条件中的任何一个,便能够分离出独立的资源。该模型是简单的自回归模型,其估计可以通过最大似然估计来执行。我们还提出了给出简单算法的简单而准确的似然估计。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号