首页> 外文期刊>Selected Topics in Signal Processing, IEEE Journal of >Blind Source Separation for Unimodal and Multimodal Brain Networks: A Unifying Framework for Subspace Modeling
【24h】

Blind Source Separation for Unimodal and Multimodal Brain Networks: A Unifying Framework for Subspace Modeling

机译:单峰和多峰脑网络的盲源分离:子空间建模的统一框架

获取原文
获取原文并翻译 | 示例

摘要

In the past decade, numerous advances in the study of the human brain were fostered by successful applications of blind source separation (BSS) methods to a wide range of imaging modalities. The main focus has been on extracting “networks” represented as the underlying latent sources. While the broad success in learning latent representations from multiple datasets has promoted the wide presence of BSS in modern neuroscience, it also introduced a wide variety of objective functions, underlying graphical structures, and parameter constraints for each method. Such diversity, combined with a host of datatype-specific know-how, can cause a sense of disorder and confusion, hampering a practitioner's judgment and impeding further development. We organize the diverse landscape of BSS models by exposing its key features and combining them to establish a novel unifying view of the area. In the process, we unveil important connections among models according to their properties and subspace structures. Consequently, a high-level descriptive structure is exposed, ultimately helping practitioners select the right model for their applications. Equipped with that knowledge, we review the current state of BSS applications to neuroimaging. The gained insight into model connections elicits a broader sense of generalization, highlighting several directions for model development. In light of that, we discuss emerging multidataset multidimensional models and summarize their benefits for the study of the healthy brain and disease-related changes.
机译:在过去的十年中,通过盲源分离(BSS)方法在各种成像方式中的成功应用,促进了人脑研究的众多进步。主要重点是提取代表潜在潜在来源的“网络”。虽然从多个数据集中学习潜在表示的广泛成功促进了BSS在现代神经科学中的广泛存在,但它也为每种方法引入了各种各样的目标函数,基本的图形结构和参数约束。这种多样性与大量特定于数据类型的专有技术相结合,会引起混乱和混乱,阻碍从业者的判断并阻碍其进一步发展。通过展示BSS模型的关键特征并将其结合起来,以建立该区域的新颖统一视图,我们组织了BSS模型的多样化景观。在此过程中,我们根据模型的属性和子空间结构揭示了模型之间的重要连接。因此,公开了高级描述性结构,最终帮助从业人员为他们的应用选择正确的模型。有了这些知识,我们将回顾BSS在神经影像学中的应用现状。对模型连接的深入了解引起了更广泛的概括,突出了模型开发的几个方向。有鉴于此,我们讨论了新兴的多数据集多维模型,并总结了它们对研究健康大脑和疾病相关变化的益处。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号