首页> 外文期刊>Signal processing >Parallel Kalman filtering for optimal symbol-by-symbol estimation in an equalization context
【24h】

Parallel Kalman filtering for optimal symbol-by-symbol estimation in an equalization context

机译:并行卡尔曼滤波在均衡上下文中实现逐个符号的最佳估计

获取原文
获取原文并翻译 | 示例

摘要

in this paper, the equalization is placed in an estimation framework where the unknown state to be estimated is a finite sequence of transmitted symbols. A Network of Kalman Filters (NKF) has been suggested for this purpose which is based on modeling the a posteriori symbol state probability density function (pdf) by a Weighted Gaussian Sum (WGS). As the theoretical number of Gaussian terms is increasing dramatically through iterations, several variations on the NKF are presented here while seeking a compromise between complexity and optimal equalization in terms of bit error rate (BER) performance. The suggested trade-off solution consists in merging and pruning the NKF at the beginning of each symbol sequence prediction step. To deal with nonstationary channel equalization, blind hybrid channel/symbol estimation algorithms based on a Kalman (or RLS) channel identification are shown to have a better BER performance and a more stable convergence behavior, compared to the Augmented Network of Kalman Filters (ANKF) and to the Blind Bayesian Equalizer (BBE) developed in (IEEE Trans. Commun. 42 (1994) 1019). Finally, the structure of the NKF is shown to be a kind of Recurrent Radial Basis Function Network (RRBFN) of a reduced size and its performance is compared to that of RBF-based equalizers (IEEE Trans. Neural Networks 4 (1993) 570). (c) 2005 Elsevier B.V. All rights reserved.
机译:在本文中,将均衡置于估计框架中,其中待估计的未知状态是传输符号的有限序列。为此,已经提出了卡尔曼滤波器网络(NKF),其基于通过加权高斯和(WGS)对后验符号状态概率密度函数(pdf)进行建模。随着高斯项的理论数目通过迭代急剧增加,在此提出了NKF的几种变体,同时在误码率(BER)性能方面寻求了复杂性和最佳均衡之间的折衷。建议的权衡解决方案包括在每个符号序列预测步骤的开始处合并和修剪NKF。为了处理非平稳信道均衡,与卡尔曼滤波器的增强网络(ANKF)相比,基于卡尔曼(或RLS)信道识别的盲混合信道/符号估计算法具有更好的BER性能和更稳定的收敛性能。以及在(IEEE Trans。Commun。42(1994)1019)中开发的盲贝叶斯均衡器(BBE)。最后,NKF的结构被证明是一种递归径向基函数网络(RRBFN),具有减小的大小,并且其性能与基于RBF的均衡器的性能进行了比较(IEEE Trans.Neural Networks 4(1993)570)。 。 (c)2005 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号