首页> 外文期刊>IEEE Transactions on Image Processing >KalmanFlow 2.0: Efficient Video Optical Flow Estimation via Context-Aware Kalman Filtering
【24h】

KalmanFlow 2.0: Efficient Video Optical Flow Estimation via Context-Aware Kalman Filtering

机译:KalmanFlow 2.0:通过上下文感知卡尔曼滤波进行有效的视频光流估计

获取原文
获取原文并翻译 | 示例

摘要

Recent studies on optical flow typically focus on the estimation of the single flow field in between a pair of images but pay little attention to the multiple consecutive flow fields in a longer video sequence. In this paper, we propose an efficient video optical flow estimation method by exploiting the temporal coherence and context dynamics under a Kalman filtering system. In this system, pixel's motion flow is first formulated as a second-order time-variant state vector and then optimally estimated according to the measurement and system noise levels within the system by maximum a posteriori criteria. Specifically, we evaluate the measurement noise according to the flow's temporal derivative, spatial gradient, and warping error. We determine the system noise based on the similarity of contextual information, which is represented by the compact features learned by pre-trained convolutional neural networks. The context-aware Kalman filtering helps improve the robustness of our method against abrupt change of light and occlusion/dis-occlusion in complicated scenes. The experimental results and analyses on the MPI Sintel, Monkaa, and Driving video datasets demonstrate that the proposed method performs favorably against the state-of-the-art approaches.
机译:最近关于光流的研究通常集中在一对图像之间的单个流场的估计上,而很少关注较长视频序列中的多个连续流场。在本文中,我们利用卡尔曼滤波系统下的时间相干性和上下文动态,提出了一种有效的视频光流估计方法。在该系统中,首先将像素的运动流公式化为二阶时变状态向量,然后根据系统中的测量值和系统噪声水平(通过最大后验准则)对其进行最佳估计。具体来说,我们根据流量的时间导数,空间梯度和翘曲误差评估测量噪声。我们根据上下文信息的相似性确定系统噪声,该相似性由预训练的卷积神经网络学习的紧凑特征表示。上下文感知的卡尔曼滤波有助于提高我们的方法的鲁棒性,以抵抗复杂场景中光线的突然变化和遮挡/遮挡。在MPI Sintel,Monkaa和Driving视频数据集上进行的实验结果和分析表明,提出的方法相对于最新方法具有良好的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号