首页> 外文期刊>Signal processing >Mean-square filtering for uncertain linear stochastic systems
【24h】

Mean-square filtering for uncertain linear stochastic systems

机译:不确定线性随机系统的均方滤波

获取原文
获取原文并翻译 | 示例

摘要

This paper presents the mean-square joint filtering and parameter identification problem for uncertain linear stochastic systems with unknown parameters in both, state and observation, equations, where the unknown parameters are considered Wiener processes. The original problem is reduced to the filtering problem for an extended state vector that incorporates parameters as additional states. The resulting filtering system is polynomial in state and linear in observations. The obtained mean-square filter for the extended state vector also serves as the mean-square identifier for the unknown parameters. A simulation example is included to show convergence of the designed mean-square state filter and parameter identifier for both, positive and negative, parameter values.
机译:本文提出了状态和观测方程均具有未知参数的不确定线性随机系统的均方联合滤波和参数辨识问题,其中未知参数被视为维纳过程。最初的问题被简化为对扩展状态向量的过滤问题,该状态向量将参数作为附加状态。所得的滤波系统的状态为多项式,观测值为线性。所获得的扩展状态向量的均方滤波器还可以用作未知参数的均方标识符。包括一个仿真示例,以显示正负参数值的设计均方状态滤波器和参数标识符的收敛性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号