首页> 外文期刊>Signal processing >Exploring weak-periodic-signal stochastic resonance in locally optimal processors with a Fisher information metric
【24h】

Exploring weak-periodic-signal stochastic resonance in locally optimal processors with a Fisher information metric

机译:利用Fisher信息度量探索局部最优处理器中的弱周期信号随机共振

获取原文
获取原文并翻译 | 示例

摘要

For processing a weak periodic signal in additive white noise, a locally optimal processor (LOP) achieves the maximal output signal-to-noise ratio (SNR). In general, such a LOP is precisely determined by the noise probability density and also by the noise level. It is shown that the output-input SNR gain of a LOP is given by the Fisher information of a standardized noise distribution. Based on this connection, we find that an arbitrarily large SNR gain, for a LOP, can be achieved ranging from the minimal value of unity upwards. For stochastic resonance, when considering adding extra noise to the original signal, we here demonstrate via the appropriate Fisher information inequality that the updated LOP fully matched to the new noise, is unable to improve the output SNR above its original value with no extra noise. This result generalizes a proof that existed previously only for Gaussian noise. Furthermore, in the situation of non-adjustable processors, for instance when the structure of the LOP as prescribed by the noise probability density is not fully adaptable to the noise level, we show general conditions where stochastic resonance can be recovered, manifested by the possibility of adding extra noise to enhance the output SNR.
机译:为了在加性白噪声中处理微弱的周期性信号,局部最佳处理器(LOP)实现了最大输出信噪比(SNR)。通常,这种LOP是由噪声概率密度以及噪声水平精确确定的。结果表明,LOP的输出输入SNR增益由标准化噪声分布的Fisher信息给出。基于这种联系,我们发现,对于LOP,可以实现任意大的SNR增益,范围从最小的单位向上。对于随机共振,当考虑在原始信号上添加额外的噪声时,我们在此处通过适当的Fisher信息不等式证明,更新的LOP与新噪声完全匹配,无法在没有额外噪声的情况下将输出SNR提高到其原始值以上。该结果概括了以前仅对高斯噪声存在的证明。此外,在不可调节处理器的情况下,例如,当由噪声概率密度规定的LOP的结构不能完全适应噪声水平时,我们展示了可以恢复随机共振的一般条件,这种可能性证明了这一点。增加额外的噪声以增强输出SNR的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号