首页> 外文期刊>Signal processing >Employing spatially constrained ICA and wavelet denoising, for automatic removal of artifacts from multichannel EEC data
【24h】

Employing spatially constrained ICA and wavelet denoising, for automatic removal of artifacts from multichannel EEC data

机译:利用空间受限的ICA和小波去噪,从多通道EEC数据中自动去除伪像

获取原文
获取原文并翻译 | 示例

摘要

Detecting artifacts produced in electroencephalographic (EEC) data by muscle activity, eye blinks and electrical noise, etc., is an important problem in EEC signal processing research. These artifacts must be corrected before further analysis because it renders subsequent analysis very error-prone. One solution is to reject the data segment if artifact is present during the observation interval, however, the rejected data segment could contain important information masked by the artifact. The independent compo nent analysis (ICA) can be an effective and applicable method for EEG denoising. The goal of this paper is to propose a framework, based on ICA and wavelet denoising (WD), to improve the pre-processing of EEG signals. In particular we employ concept of the spatially constrained ICA (SCICA) to extract artifact-only independent components (ICs) from the given EEG data, use WD to remove any cerebral activity from the extracted artifacts ICs, and finally project back the artifacts to be subtracted from EEG signals to get clean EEG data. The main advantage of the proposed approach is faster computation, as it is not necessary to identify all ICs. Computer experiments are carried out, which demonstrate effectiveness of the proposed approach in removing focal artifacts that can be well separated by SCICA.
机译:通过肌肉活动,眨眼和电噪声等检测脑电图(EEC)数据中产生的伪影是EEC信号处理研究中的重要问题。在进一步分析之前,必须对这些伪像进行校正,因为这会使后续分析非常容易出错。一种解决方案是如果在观察间隔期间存在伪像,则拒绝数据段,但是,被拒绝的数据段可能包含被伪像掩盖的重要信息。独立分量分析(ICA)是一种有效且适用的EEG去噪方法。本文的目的是提出一个基于ICA和小波去噪(WD)的框架,以改善EEG信号的预处理。特别是,我们采用空间受限ICA(SCICA)的概念从给定的EEG数据中提取仅工件的独立成分(IC),使用WD从所提取的工件IC中去除任何大脑活动,最后将工件投影回从脑电信号中减去以获得干净的脑电数据。提议的方法的主要优点是计算速度更快,因为不必识别所有IC。进行了计算机实验,证明了所提出方法在去除SCICA可以很好分离的焦点伪影方面的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号