机译:基于小波的包络特征,可自动去除EOG伪像:应用于单次EEC数据
Graduate Institute of Biomedical Informatics, Taipei Medical University, 250 Wu-Xin Street, Taipei 110, Taiwan;
Department of Geomatics, National Cheng Kung University No. 1, University Road, Tainan City 701, Taiwan;
Institute of Manufacturing Engineering, National Cheng Kung University, No.1, University Road, Tainan City 701, Taiwan;
Department of Electrical Engineering. National Cheng Kung University. No.1. University Road, Tainan City 701, Taiwan;
Department of Education, National Chiayi University, No.300, Syuefu Road, Chiayi City 60004, Taiwan;
brain-computer interface (BCI); electroencephalogram (EEG); Independent component analysis (ICA); discrete wavelet transform (DWT); amplitude modulation (AM); support vector machine (SVM);
机译:具有活动段选择的基于小波的分形特征:应用于单次EEG数据。
机译:利用空间受限的ICA和小波去噪,从多通道EEC数据中自动去除伪像
机译:从单通道EEG - 一种高效方法中移除EOG伪影和不同脑活动组分的分离,将SSA-ICA与BCI应用的小波阈值相结合
机译:基于ICA的MEG数据自动去除伪影的线性和非线性特征
机译:新生儿多通道脑电图模拟器的设计:应用于时频方法以自动去除伪影和癫痫发作。
机译:单通道脑电数据基于小波的无监督人工眼去除技术的比较研究
机译:睡眠阶段分类的自动EOG和EmG去除方法