首页> 外文期刊>Biomedical signal processing and control >Artifacts-matched blind source separation and wavelet transform for multichannel EEG denoising
【24h】

Artifacts-matched blind source separation and wavelet transform for multichannel EEG denoising

机译:伪影匹配盲源分离和小波变换的多通道脑电信号去噪

获取原文
获取原文并翻译 | 示例

摘要

The physiological artifacts such as electromyogram (EMG) and electrooculogram (EOG) remain a major problem in electroencephalogram (EEG) research. A number of techniques are currently in use to remove these artifacts with the hope that the process does not unduly degrade the quality of the obscured EEG. In this paper, a new method has been proposed by combining two techniques: a canonical correlation analysis (CCA) followed by a stationary wavelet transform (SWT) to remove EMG artifacts and a second-order blind identification (SOBI) technique followed by SWT to remove EOG artifacts. The simulation results show that these combinations are more effective than either using the individual techniques alone or using other combinations of techniques. The quality of the artifact removal is evaluated by calculating correlations between processed and unprocessed data, and the practicability of the technique is judged by comparing execution times of the algorithms. (C) 2015 Elsevier Ltd. All rights reserved.
机译:诸如肌电图(EMG)和眼电图(EOG)的生理伪影仍然是脑电图(EEG)研究中的主要问题。当前正在使用多种技术来去除这些伪像,希望该过程不会不适当地降低模糊的EEG的质量。在本文中,通过结合两种技术提出了一种新方法:规范相关分析(CCA)和平稳小波变换(SWT)以去除EMG伪影,以及二阶盲识别(SOBI)技术然后由SWT进行。去除EOG伪像。仿真结果表明,这些组合比单独使用单个技术或使用其他技术组合更有效。通过计算已处理数据与未处理数据之间的相关性来评估伪影去除的质量,并通过比较算法的执行时间来判断该技术的实用性。 (C)2015 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号