首页> 外文期刊>Signal processing >A semi-algebraic framework for approximate CP decompositions via simultaneous matrix diagonalizations (SECSI)
【24h】

A semi-algebraic framework for approximate CP decompositions via simultaneous matrix diagonalizations (SECSI)

机译:通过同时矩阵对角化(SECSI)进行近似CP分解的半代数框架

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we propose a framework to compute approximate CANDECOMP / PARAFAC (CP) decompositions. Such tensor decompositions are viable tools in a broad range of applications, creating the need for versatile tools to compute such decompositions with an adjustable complexity-accuracy trade-off. To this end, we propose a novel SEmi-algebraic framework that allows the computation of approximate C P decompositions via S/multaneous Matrix Diagonalizations (SECSI). In contrast to previous Simultaneous Matrix Diagonalization (SMD)-based approaches, we use the tensor structure to construct not only one but the full set of possible SMDs. Solving all SMDs, we obtain multiple estimates of the factor matrices and present strategies to choose the best estimate in a subsequent step. This SECSI framework retains the option to choose the number of SMDs to solve and to adopt various strategies for the selection of the final solution out of the multiple estimates. A best matching scheme based on an exhaustive search as well as heuristic selection schemes are devised to flexibly adapt to specific applications. Four example algorithms with different accuracy-complexity trade-off points are compared to state-of-the-art algorithms. We obtain more reliable estimates and a reduced computational complexity.
机译:在本文中,我们提出了一个框架来计算近似的CANDECOMP / PARAFAC(CP)分解。这种张量分解在广泛的应用中是可行的工具,因此需要通用的工具来以可调整的复杂度-准确性的折衷来计算这样的分解。为此,我们提出了一种新颖的SEmi代数框架,该框架允许通过S /多矩阵对角化(SECSI)计算近似C P分解。与以前的基于同时矩阵对角线化(SMD)的方法相比,我们使用张量结构不仅构造一个可能的SMD,而且构造可能的SMD的完整集合。解决所有SMD,我们获得因子矩阵的多个估计,并提出了在后续步骤中选择最佳估计的策略。该SECSI框架保留了选择要解决的SMD数量以及采用多种策略从多个估计中选择最终解决方案的选项。设计了基于穷举搜索的最佳匹配方案以及启发式选择方案,以灵活地适应特定的应用。将具有不同精度复杂度折衷点的四种示例算法与最新算法进行了比较。我们获得更可靠的估计并降低了计算复杂性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号