首页> 外文期刊>Signal processing >Joint source separation and dereverberation using constrained spectral divergence optimization
【24h】

Joint source separation and dereverberation using constrained spectral divergence optimization

机译:联合源分离和去混响使用约束谱发散优化

获取原文
获取原文并翻译 | 示例

摘要

A novel method of joint source separation and dereverberation that minimizes the divergence between the observed and true spectral subband envelopes is discussed in this paper. This divergence minimization is carried out within the non-negative matrix factorization (NMF) framework by imposing certain non-negative constraints on the subband envelopes. Additionally, the joint source separation and dereverberation framework described herein utilizes the spectral subband envelope obtained from group delay spectral magnitude (GDSM). In order to obtain the spectral subband envelope from the GDSM, the equivalence of the magnitude and the group delay spectrum via the weighted cepstrum is used. Since the subband envelope of the group delay spectral magnitude is robust and has a high spectral resolution, less error is noted in the NMF decomposition. Late reverberation components present in the separated signals are then removed using a modified spectral subtraction technique. The quality of separated and dereverberated speech signal is evaluated using several objective and subjective criteria. Experiments on distant speech recognition are then conducted at various direct-to-reverberant ratios (DRR) on the GRID corpus. Experimental results indicate significant improvements over existing methods in the literature.
机译:本文讨论了一种新的联合源分离和去混响方法,该方法将观测到的和真实的频谱子带包络之间的差异最小化。通过在子带包络上施加某些非负约束,可以在非负矩阵分解(NMF)框架内实现这种差异最小化。另外,本文描述的联合源分离和去混响框架利用从群延迟频谱幅度(GDSM)获得的频谱子带包络。为了从GDSM获得频谱子带包络,使用了经过加权倒频谱的幅度和群时延频谱的等效。由于群延迟频谱幅度的子带包络是鲁棒的并且具有高频谱分辨率,因此在NMF分解中注意到较少的误差。然后使用改进的频谱减法技术将分离出的信号中存在的后期混响成分去除。使用几个客观和主观标准来评估分离和去皮语音信号的质量。然后在GRID语料库上以各种直接混响比(DRR)进行远程语音识别的实验。实验结果表明,与文献中的现有方法相比,已有显着改进。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号