首页> 外文学位 >Blind Separation and Tracking of Sources with Spatial, Temporal and Spectral Dynamics.
【24h】

Blind Separation and Tracking of Sources with Spatial, Temporal and Spectral Dynamics.

机译:盲分离和跟踪具有空间,时间和光谱动力学的光源。

获取原文
获取原文并翻译 | 示例

摘要

The problem of separating mixed signals using multiple sensors, commonly known as blind source separation (BSS), has received much attention in recent years. For many real world sources such as acoustical signals, the signals undergo a convoluted mixing due to reverberation caused by the environment. In this thesis we intend to develop algorithms that are able to separate and track convolutedly mixed acoustical sources when dealing with the following adverse scenarios: 1) the number of sources exceeds the number of sensors (overcomplete case), 2) the number of sources is known but their temporal profile is unknown as each source can experience silence periods intermittently, 3) the number of sources is unknown and time-varying as new sources can appear and existing sources can vanish, 4) the sources are moving in space. Overall, these scenarios reflect the spatial and temporal dynamics that acoustical sources can potentially undertake, complicating the BSS problem. In addition, acoustical sources like speech can exhibit spectral dynamics, where the short time Fourier transform (STFT) of the sources experience a certain sparse pattern due to the pitch frequency and formants of speech phonemes that can differ from source to source and from time interval to time interval. In this thesis we will show that spectral dynamics, unlike the other forms of dynamics, does not complicate the BSS problem and in fact by exploiting it one can simplify the BSS problem when dealing with the adverse aforementioned scenarios. The contributions of this thesis are three algorithms where each algorithm compared to the previous one deals with a more intricate combination of aforementioned scenarios. The first is a batch algorithm that deals with scenarios 1 and 2 by incorporating a glimpsing strategy which "listens in" the silence gaps to compensate for the global degeneracy (of having more sources than sensors) by making use of segments where it is locally less degenerate. The second is an online algorithm that deals with scenarios 1, 2 and 4 by using a glimpsing multiple model particle filter (MMPF) to switch between the different combinations of silence gaps. The third one is a quasi-online algorithm that deals with scenarios 1, 3 and 4 which contain the most uncertainties when compared to the other combinations. In order to deal with this challenging problem, we synergistically combine two key ideas, one in the front end and the other at the back end. In the front end we employ independent component analysis (ICA) to demix the mixtures and the state coherence transform (SCT) to represent the signals in a direction of arrival (DOA) detection framework. By exploiting the spectral sparsity of the sources, ICA/SCT is even effective when the number of simultaneous sources is greater than the number of sensors therefore allowing for minimal number of sensors to be used. At the back end, the probability hypothesis density (PHD) filter is incorporated in order to track the multiple DOAs and determine the number of sources. The PHD filter is based on random finite sets (RFS) where the multi-target states and the number of targets are integrated to form a set-valued variable with uncertainty in the number of sources. A Gaussian mixture implementation of the PHD filter (GM-PHD) is utilized that solves the data association problem intrinsically, hence providing distinct DOA tracks. The distinct tracks also make the separation task possible by going back and rearranging the outputs of the ICA stage.
机译:近年来,使用多个传感器分离混合信号的问题(通常称为盲源分离(BSS))受到了广泛关注。对于诸如声音信号之类的许多现实世界的信号,由于环境造成的混响,信号经历了复杂的混合。在本文中,我们打算开发一种算法,当处理以下不利情况时,该算法能够分离并跟踪令人费解的混合声源:1)声源的数量超过传感器的数量(超完备情况),2)声源的数量为已知,但是它们的时间分布是未知的,因为每个源都可以间歇性地经历静默期; 3)源的数量未知,并且随着新源的出现和现有源的消失而随时间变化; 4)源在空间中移动。总体而言,这些场景反映了声源可能承担的空间和时间动态变化,使BSS问题复杂化。此外,诸如语音之类的声源可能会表现出频谱动力学,其中由于音素的音调频率和共振峰的音高在各个源之间和各个时间间隔之间可能不同,因此这些源的短时傅立叶变换(STFT)会经历某种稀疏模式。到时间间隔。在这篇论文中,我们将展示频谱动力学,与其他形式的动力学不同,它不会使BSS问题复杂化,并且实际上,通过利用它可以在处理不利的上述情况时简化BSS问题。本文的主要贡献是三种算法,与前一种算法相比,每种算法都更复杂地结合了上述场景。第一种是批处理算法,它通过结合瞥见策略来处理方案1和2,该策略可以“监听”静默间隙,以通过使用局部位置较少的段来补偿全局退化(具有比传感器更多的源)。退化。第二种是在线算法,它通过使用瞥见多模型粒子滤波器(MMPF)在沉默间隙的不同组合之间进行切换来处理方案1、2和4。第三个是准在线算法,它处理方案1、3和4,与其他组合相比,它们包含的不确定性最大。为了解决这个具有挑战性的问题,我们协同地将两个关键思想组合在一起,一个在前端,另一个在后端。在前端,我们使用独立成分分析(ICA)对混合物进行混合,并使用状态相干变换(SCT)来表示到达方向(DOA)检测框架中的信号。通过利用光源的光谱稀疏性,当同时光源的数量大于传感器的数量时,ICA / SCT甚至是有效的,因此允许使用最少数量的传感器。在后端,并入了概率假设密度(PHD)过滤器,以便跟踪多个DOA并确定源数量。 PHD滤波器基于随机有限集(RFS),其中将多目标状态和目标数量进行积分,以形成具有源数量不确定性的集值变量。利用PHD滤波器(GM-PHD)的高斯混合实现方案,从本质上解决了数据关联问题,从而提供了独特的DOA轨迹。回溯并重新排列ICA阶段的输出,不同的轨道也使分离任务成为可能。

著录项

  • 作者

    Masnadi-Shirazi, Alireza.;

  • 作者单位

    University of California, San Diego.;

  • 授予单位 University of California, San Diego.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 139 p.
  • 总页数 139
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号