首页> 外文期刊>Signal processing >Hypergraph regularized autoencoder for image-based 3D human pose recovery
【24h】

Hypergraph regularized autoencoder for image-based 3D human pose recovery

机译:超图正则化自动编码器,用于基于图像的3D人体姿势恢复

获取原文
获取原文并翻译 | 示例

摘要

Image-based human pose recovery is usually conducted by retrieving relevant poses with image features. However, semantic gap exists for current feature extractors, which limits recovery performance. In this paper, we propose a novel feature extractor with deep learning. It is based on denoising autoencoder and improves traditional methods by adopting locality preserved restriction. To impose this restriction, we introduce manifold regularization with hypergraph Laplacian. Hypergraph Laplacian matrix is constructed with patch alignment framework. In this way, an automatic feature extractor for silhouettes is achieved. Experimental results on two datasets show that the recovery error has been reduced by 10% to 20%, which demonstrates the effectiveness of the proposed method.
机译:基于图像的人体姿势恢复通常是通过检索具有图像特征的相关姿势来进行的。但是,当前特征提取器存在语义缺口,这限制了恢复性能。在本文中,我们提出了一种具有深度学习的新颖特征提取器。它基于去噪自动编码器,并通过采用局部性保留限制来改进传统方法。为了施加此限制,我们引入了超图Laplacian的流形正则化。 Hypergraph Laplacian矩阵是使用补丁对齐框架构建的。以此方式,实现了用于轮廓的自动特征提取器。在两个数据集上的实验结果表明,恢复误差已降低了10%至20%,这证明了该方法的有效性。

著录项

  • 来源
    《Signal processing》 |2016年第7期|132-140|共9页
  • 作者单位

    School of Computer and information Engineering, Xiamen University of Technology, Xiamen, Fujian 361024, China,Ligong Road #600, Jimei, Xiamen, Fujian, 361024, China;

    School of Computer and information Engineering, Xiamen University of Technology, Xiamen, Fujian 361024, China;

    School of Computer and information Engineering, Xiamen University of Technology, Xiamen, Fujian 361024, China;

    School of Computer and information Engineering, Xiamen University of Technology, Xiamen, Fujian 361024, China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Human pose recovery; Deep learning; Manifold regularization; Hypergraph; Patch alignment framework;

    机译:人体姿势恢复;深度学习;歧管正则化;超图补丁对齐框架;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号