首页> 外文期刊>Signal processing >Multi-task support vector machines for feature selection with shared knowledge discovery
【24h】

Multi-task support vector machines for feature selection with shared knowledge discovery

机译:多任务支持向量机,用于通过共享知识发现进行特征选择

获取原文
获取原文并翻译 | 示例

摘要

Feature selection is an effective way to reduce computational cost and improve feature quality for the large-scale multimedia analysis system. In this paper, we propose a novel feature selection method in which the hinge loss function with a ℓ_(2,1) -norm regularization term is used to learn a sparse feature selection matrix for each learning task. Meanwhile, shared information exploiting across multiple tasks has been also taken into account by imposing a constraint which globally limits the combined feature selection matrices to be low-rank. A convex optimization method is proposed to use in the framework by minimizing the trace norm of a matrix instead of minimizing the rank of a matrix directly. Afterwards, gradient descent is applied to find the global optimum. Extensive experiments have been conducted across eight datasets for different multimedia applications, including action recognition, face recognition, object recognition and scene recognition. Experimental results demonstrate that the proposed method performs better than other compared approaches. Especially, when the shared information across multiple tasks is very beneficial to the multi-task learning, obvious improvements can be observed.
机译:特征选择是一种减少大型多媒体分析系统的计算成本并提高特征质量的有效方法。在本文中,我们提出了一种新颖的特征选择方法,其中具有with_(2,1)-范数正则化项的铰链损失函数用于学习每个学习任务的稀疏特征选择矩阵。同时,还通过施加约束来考虑跨多个任务的共享信息利用,该约束将组合特征选择矩阵总体上限制为低等级。通过最小化矩阵的迹范而不是直接最小化矩阵的秩,提出了一种凸优化方法用于框架。之后,应用梯度下降法来找到全局最优值。跨八个数据集针对不同的多媒体应用进行了广泛的实验,包括动作识别,面部识别,对象识别和场景识别。实验结果表明,该方法比其他方法具有更好的性能。特别地,当跨多个任务的共享信息对于多任务学习非常有益时,可以观察到明显的改进。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号