首页> 外文会议>Adaptive and Natural Computing Algorithms pt.2; Lecture Notes in Computer Science; 4432 >A New Feature Selection Method for Improving the Precision of Diagnosing Abnormal Protein Sequences by Support Vector Machine and Vectorization Method
【24h】

A New Feature Selection Method for Improving the Precision of Diagnosing Abnormal Protein Sequences by Support Vector Machine and Vectorization Method

机译:支持向量机和矢量化方法提高蛋白质异常序列诊断精度的新特征选择方法

获取原文
获取原文并翻译 | 示例

摘要

Pattern recognition and classification problems are most popular issue in machine learning, and it seem that they meet their second golden age with biomformatics. However, the dataset of bioinfor-matics has several distinctive characteristics compared to the data set in classical pattern recognition and classification research area. One of the most difficulties using this theory in bioinformatics is that raw data of DNA or protein sequences cannot be directly used as input data for machine learning because every sequence has different length of its own code sequences. Therefore, this paper introduces one of the methods to overcome this difficulty, and also argues that the capability of generalization in this method is very poor as showing simple experiments. Finally, this paper suggests different approach to select the fixed number of effective features by using Support Vector Machine, and noise whitening method. This paper also defines the criteria of this suggested method and shows that this method improves the precision of diagnosing abnormal protein sequences with experiment of classifying ovarian cancer data set.
机译:模式识别和分类问题是机器学习中最流行的问题,似乎它们已经达到了生物信息学的第二个黄金时代。但是,与经典模式识别和分类研究领域中的数据集相比,生物信息学数据集具有几个鲜明的特征。在生物信息学中使用该理论的最大困难之一是DNA或蛋白质序列的原始数据不能直接用作机器学习的输入数据,因为每个序列都有自己的编码序列不同的长度。因此,本文介绍了一种克服这一困难的方法,并指出该方法的泛化能力很差,因为它显示了简单的实验。最后,本文提出了使用支持向量机和噪声白化方法选择固定数量的有效特征的不同方法。本文还定义了该建议方法的标准,并表明该方法通过对卵巢癌数据集进行分类的实验提高了诊断异常蛋白质序列的准确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号